Normalizing a Joint PDF

A certain joint PDF for two random variables X X and Y Y is given by the following expression:

f X Y ( x , y ) = C x y e y 2 , f_{XY} (x,y) = Cxy e^{-y^2},

where Y Y is drawn from ( 0 , ) (0,\infty) and X X is drawn from [ 0 , 1 ] [0,1] .

Find the normalization constant C . C.

1 4 \frac14 1 2 \frac12 2 2 4 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Uros Stojkovic
Aug 20, 2017

Detailed explanation of solving 0 1 0 C x y e y 2 d y d x = 1 \int_{0}^{1}\int_{0}^{\infty }Cxye^{-y^{2}}dydx=1 :

u = y 2 u=-y^{2}

d u = 2 y d y du=-2ydy

y d y = 1 2 d u ydy=-\frac{1}{2}du .

Substituting we get:

0 1 0 1 2 C x e u d u d x = 1 \int_{0}^{1}\int_{0}^{-\infty }-\frac{1}{2}Cxe^{u}dudx=1

Notice that integration bounds have changed also. That's because lim y u = lim y y 2 = \lim _{y\to\infty } u=\lim _{y\to\infty } -y^{2}=-\infty

Solving inner integral:

0 1 2 C x c o n s t . e u d u = [ 1 2 C x e u ] 0 = 1 2 C x e ( 1 2 C x e 0 ) = 0 ( 1 2 C x ) = 1 2 C x \begin{aligned} & \int_{0}^{-\infty }\underbrace{-\frac{1}{2}Cx}_{const.}e^{u}du \\ & = \left [ -\frac{1}{2}Cxe^{u} \right ]^{-\infty }_{0}=-\frac{1}{2}Cxe^{-\infty }-(-\frac{1}{2}Cxe^{0}) \\ & = 0-(-\frac{1}{2}Cx) \\ & =\frac{1}{2}Cx \end{aligned}

Now, we have:

0 1 1 2 C x d x = 1 1 2 C 0 1 x d x = 1 1 2 C [ x 2 2 ] 0 1 = 1 C × 1 2 = 2 C = 4 \begin{aligned} & \int_{0}^{1}\frac{1}{2}Cxdx=1 \\ & \Leftrightarrow \frac{1}{2}C\int_{0}^{1}xdx=1 \\ & \Leftrightarrow \frac{1}{2}C\left [ \frac{x^{2}}{2} \right ]^{1}_{0}=1 \\ & \Leftrightarrow C\times \frac{1}{2}=2 \\ & \Leftrightarrow C=4 \end{aligned}

Matt DeCross
Apr 20, 2016

This is computed directly by integration:

0 1 0 C x y e y 2 d y d x = 0 1 C x 2 d x = C 4 C = 4. \int_0^1 \int_0^{\infty} Cxye^{-y^2} dy dx = \int_0^1 \frac{Cx}{2} dx = \frac{C}{4} \implies C=4.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...