A certain joint PDF for two random variables and is given by the following expression:
where is drawn from and is drawn from .
Find the normalization constant
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Detailed explanation of solving ∫ 0 1 ∫ 0 ∞ C x y e − y 2 d y d x = 1 :
u = − y 2
d u = − 2 y d y
y d y = − 2 1 d u .
Substituting we get:
∫ 0 1 ∫ 0 − ∞ − 2 1 C x e u d u d x = 1
Notice that integration bounds have changed also. That's because lim y → ∞ u = lim y → ∞ − y 2 = − ∞
Solving inner integral:
∫ 0 − ∞ c o n s t . − 2 1 C x e u d u = [ − 2 1 C x e u ] 0 − ∞ = − 2 1 C x e − ∞ − ( − 2 1 C x e 0 ) = 0 − ( − 2 1 C x ) = 2 1 C x
Now, we have:
∫ 0 1 2 1 C x d x = 1 ⇔ 2 1 C ∫ 0 1 x d x = 1 ⇔ 2 1 C [ 2 x 2 ] 0 1 = 1 ⇔ C × 2 1 = 2 ⇔ C = 4