Normalizing Orthogonal Functions

Let the wavefunction of a particle be

Ψ ( x , 0 ) = A ( 2 ψ 1 ( x ) + 5 ψ 2 ( x ) ) , \Psi(x,0)=A(\sqrt{2}{\psi}_{1}(x)+\sqrt{5}{\psi}_{2}(x)),

where ψ 1 ( x ) {\psi}_{1}(x) and ψ 1 ( x ) {\psi}_{1}(x) are orthogonal. Calculate the normalization constant A A to three decimal places.


The answer is 0.378.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Deepanshu Gupta
Oct 12, 2015

Use following Facts : \text{Use following Facts :}

\bullet Any two wave functions \text{Any two wave functions} ψ 1 ( x ) , ψ 2 ( x ) \displaystyle{{ \psi }_{ 1 }(x),{ { \psi }_{ 2 }(x) }} are said to be orthogonal if : \text{are said to be orthogonal if :}

ψ 1 ( x ) . ψ 2 ( x ) d x = 0 = ψ 1 ( x ) . ψ 2 ( x ) d x \displaystyle{\int { { \psi }_{ 1 }(x).{ { \psi }_{ 2 }(x) }^{ * }dx } =0=\int { { { \psi }_{ 1 }(x) }^{ * }.{ \psi }_{ 2 }(x)dx } }

\bullet Any wave function \text{Any wave function} , ψ ( x ) { \psi }(x) is said to be normalized if, probability of finding the particle in total space is equal to 1 :: \text{is said to be normalized if, probability of finding the particle in total space is equal to 1 ::}

ψ ( x ) . ψ ( x ) d x = 1 \displaystyle{{\int { { \psi }(x).{ { \psi }(x) }^{ * }dx } =1}}

Hence: \text{Hence:} A = 1 7 = 0.377 \displaystyle{\boxed { A=\cfrac { 1 }{ \sqrt { 7 } } =0.377 } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...