∫ 0 1 arctan ( 7 x ) d x = B ln A + D C π − F E
The equation above holds true for positive integers A , B , C , D , E , and F , with A , C , and E minimized. Find A + B + C + D + E + F .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The given integral
I = ∫ 0 1 arctan ( x 1 / 7 ) d x
Integrating by parts yields:
I = x arctan ( x 1 / 7 ) ∣ ∣ ∣ 0 1 − 7 1 ∫ 0 1 1 + x 2 / 7 x 1 / 7 d x I = 4 π − I 2
Where:
I 2 = 7 1 ∫ 0 1 1 + x 2 / 7 x 1 / 7 d x
The following substitution:
x 1 / 7 = tan p ⟹ x = tan 7 ( p ) ⟹ d x = 7 sec 2 ( p ) tan 6 ( p ) d p
This transforms the integral to:
I 2 = ∫ 0 π / 4 tan 7 ( p ) d p
Consider the general integral:
J n = ∫ 0 π / 4 tan n ( p ) d p ⟹ ∫ 0 π / 4 tan n − 2 ( p ) ( sec 2 ( p ) − 1 ) d p J n = ∫ 0 π / 4 tan n − 2 ( p ) sec 2 ( p ) − J n − 2 J n = n − 1 tan n − 1 ( p ) ∣ ∣ ∣ ∣ 0 π / 4 − J n − 2 J n = n − 1 1 − J n − 2
Now, applying this formula recursively:
I 2 = J 7 = 6 1 − J 5 ⟹ I 2 = 6 1 − 4 1 + 2 1 − J 1 = 1 2 5 − J 1 I 2 = 1 2 5 − ∫ 0 π / 4 tan ( p ) d p ⟹ I 2 = 1 2 5 − 2 ln 2
Therefore:
I = 4 π − I 2 ⟹ I = 4 π + 2 ln 2 − 1 2 5
I have skipped explaining steps which I consider trivial. I will elaborate if requested.
Simple and elegant solution!!
We have 1 + x 2 1 arctan ( x ) arctan ( 7 x ) ∫ 0 1 arctan ( 7 x ) d x = 1 − x 2 + x 4 − ⋯ = x − 3 1 x 3 + 5 1 x 5 − ⋯ = x 1 / 7 − 3 1 x 3 / 7 + 5 1 x 5 / 7 − ⋯ = 8 7 x 8 / 7 − 1 0 7 3 1 x 1 0 / 7 + 1 2 7 5 1 x 1 2 / 7 − ⋯ ∣ ∣ ∣ ∣ 0 1 = 1 ⋅ 8 7 − 3 ⋅ 1 0 7 + 5 ⋅ 1 2 7 − ⋯ = 1 1 − 8 1 − 3 1 + 1 0 1 + 5 1 − 1 2 1 − ⋯ Now 1 1 − 3 1 + 5 1 − ⋯ = 4 π , and − 8 1 + 1 0 1 − 1 2 1 + ⋯ = − 2 1 + 4 1 − 6 1 + ( 2 1 − 4 1 + 6 1 − 8 1 + 1 0 1 − 1 2 1 + ⋯ ) = − 1 2 5 + 2 1 ( 1 − 2 1 + 3 1 − 4 1 + ⋯ ) = − 1 2 5 + 2 1 ln ( 2 ) , so the integral is 4 π − 1 2 5 + 2 ln ( 2 ) and the answer is 2 + 2 + 1 + 4 + 5 + 1 2 = 2 6 .
(I have avoided difficult questions about the legality of rearranging terms in these conditionally convergent series because I am too lazy to resolve them!)
Observe that 7 x is invertible. This allows us to safely make the parametrization y = arctan t and t = 7 x (or x = t 7 . The following is a known result for integrals of parametrized variables: If y = F ( x ) where x = f ( t ) and y = g ( t ) , then ∫ a b F ( x ) d x = ∫ α β g ( t ) f ′ ( t ) where f ( α ) = a and f ( β ) = b .
Setting f ( t ) = t 7 and g ( t ) = arctan t yields the following:
∫ 0 1 7 x 6 arctan x d x = x 7 arctan x ∣ 0 1 − ∫ 0 1 x 2 + 1 x 7 d x = 4 π − ∫ 0 1 x 2 + 1 x 7 d x This can simply be solved with polynomial long division and a u -substitution. ∫ 0 1 x 2 + 1 x 7 d x = ∫ 0 1 ( x 5 − x 3 + x − x 2 + 1 x ) d x = 6 1 − 4 1 + 2 1 − 2 1 ∫ 1 2 u d u = 1 2 5 − 2 ln 2 Thus, the overall integral is equal to 2 ln 2 + 4 π − 1 2 5 . { A , B , C , D , E , F } = { 2 , 2 , 1 , 4 , 5 , 1 2 } , so A + B + C + D + E + F = 2 6 .
Problem Loading...
Note Loading...
Set Loading...
Let x = u 7 , d x = 7 u 6 d u , then the integral I becomes I = ∫ 0 1 7 u 6 arctan u d u Then by integration by parts, we get I = u 7 arctan u ∣ ∣ ∣ ∣ 0 1 − ∫ 0 1 1 + u 2 u 7 d u = 4 π − I 1 As 1 + u 2 u 7 = u 5 − u 3 + u + 1 + u 2 u , I 1 = ∫ 0 1 ( u 5 − u 3 + u − 1 + u 2 u ) d u = 6 u 6 − 4 u 4 + 2 u 2 − 2 1 ln ( u 2 + 1 ) ∣ ∣ ∣ ∣ 0 1 = 1 2 5 − 2 ln 2 So therefore I = 4 π − ( 1 2 5 − 2 ln 2 ) = 2 ln 2 + 4 π − 1 2 5 Then A = 2 , B = 2 , C = 1 , D = 4 , E = 5 , F = 1 2 , A + B + C + D + E + F = 2 6