Not a fun Integration By Parts...

Calculus Level 3

0 1 arctan ( x 7 ) d x = ln A B + C π D E F \int_0^1\arctan \left(\sqrt[7]{x}\right) dx = \frac{\ln A}{B}+\frac{C\pi}{D}-\frac{E}{F}

The equation above holds true for positive integers A A , B B , C C , D D , E E , and F F , with A A , C C , and E E minimized. Find A + B + C + D + E + F A+B+C+D+E+F .


The answer is 26.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Let x = u 7 , d x = 7 u 6 d u x=u^7,dx=7u^6du , then the integral I I becomes I = 0 1 7 u 6 arctan u d u I=\displaystyle\int_0^1 7u^6\arctan u du Then by integration by parts, we get I = u 7 arctan u 0 1 0 1 u 7 1 + u 2 d u = π 4 I 1 I=u^7\arctan u\bigg|^1_0-\displaystyle\int^1_0 \dfrac{u^7}{1+u^2}du=\dfrac{\pi}{4}-I_1 As u 7 1 + u 2 = u 5 u 3 + u + u 1 + u 2 \dfrac{u^7}{1+u^2}=u^5-u^3+u+\dfrac{u}{1+u^2} , I 1 = 0 1 ( u 5 u 3 + u u 1 + u 2 ) d u = u 6 6 u 4 4 + u 2 2 1 2 ln ( u 2 + 1 ) 0 1 = 5 12 ln 2 2 I_1=\displaystyle\int^1_0 \left(u^5-u^3+u-\dfrac{u}{1+u^2}\right)du=\dfrac{u^6}{6}-\dfrac{u^4}{4}+\dfrac{u^2}{2}-\dfrac{1}{2}\ln(u^2+1)\bigg|^1_0=\dfrac{5}{12}-\dfrac{\ln 2}{2} So therefore I = π 4 ( 5 12 ln 2 2 ) = ln 2 2 + π 4 5 12 I=\dfrac{\pi}{4}-\left(\dfrac{5}{12}-\dfrac{\ln 2}{2}\right)=\dfrac{\ln 2}{2}+\dfrac{\pi}{4}-\dfrac{5}{12} Then A = 2 , B = 2 , C = 1 , D = 4 , E = 5 , F = 12 , A + B + C + D + E + F = 26 A=2,B=2,C=1,D=4,E=5,F=12,A+B+C+D+E+F=\boxed{26}

Karan Chatrath
Jan 2, 2020

The given integral

I = 0 1 arctan ( x 1 / 7 ) d x I = \int_{0}^{1} \arctan\left(x^{1/7}\right)dx

Integrating by parts yields:

I = x arctan ( x 1 / 7 ) 0 1 1 7 0 1 x 1 / 7 d x 1 + x 2 / 7 I = \left. x\arctan\left(x^{1/7}\right) \right\vert_{0}^{1} - \frac{1}{7}\int_{0}^{1} \frac{x^{1/7}dx}{1+x^{2/7}} I = π 4 I 2 I = \frac{\pi}{4} - I_2

Where:

I 2 = 1 7 0 1 x 1 / 7 d x 1 + x 2 / 7 I_2 = \frac{1}{7}\int_{0}^{1} \frac{x^{1/7}dx}{1+x^{2/7}}

The following substitution:

x 1 / 7 = tan p x = tan 7 ( p ) d x = 7 sec 2 ( p ) tan 6 ( p ) d p x^{1/7} = \tan{p} \implies x = \tan^7(p) \implies dx = 7\sec^2(p)\tan^6(p)dp

This transforms the integral to:

I 2 = 0 π / 4 tan 7 ( p ) d p I_2 = \int_{0}^{\pi/4} \tan^7(p)dp

Consider the general integral:

J n = 0 π / 4 tan n ( p ) d p 0 π / 4 tan n 2 ( p ) ( sec 2 ( p ) 1 ) d p J_n = \int_{0}^{\pi/4} \tan^n(p)dp \implies \int_{0}^{\pi/4} \tan^{n-2}(p)\left(\sec^2(p)-1\right)dp J n = 0 π / 4 tan n 2 ( p ) sec 2 ( p ) J n 2 J_n = \int_{0}^{\pi/4} \tan^{n-2}(p)\sec^2(p) - J_{n-2} J n = tan n 1 ( p ) n 1 0 π / 4 J n 2 J_n = \left.\frac{\tan^{n-1}(p)}{n-1}\right\vert_{0}^{\pi/4} -J_{n-2} J n = 1 n 1 J n 2 \boxed{J_n = \frac{1}{n-1} - J_{n-2}}

Now, applying this formula recursively:

I 2 = J 7 = 1 6 J 5 I 2 = 1 6 1 4 + 1 2 J 1 = 5 12 J 1 I_2 = J_7 = \frac{1}{6} - J_5 \implies I_2= \frac{1}{6} - \frac{1}{4} + \frac{1}{2} - J_1 = \frac{5}{12}-J_1 I 2 = 5 12 0 π / 4 tan ( p ) d p I 2 = 5 12 ln 2 2 I_2 = \frac{5}{12} - \int_{0}^{\pi/4} \tan(p)dp \implies I_2 = \frac{5}{12} - \frac{\ln{2}}{2}

Therefore:

I = π 4 I 2 I = π 4 + ln 2 2 5 12 I = \frac{\pi}{4} - I_2 \implies \boxed{I = \frac{\pi}{4} + \frac{\ln{2}}{2} - \frac{5}{12}}

I have skipped explaining steps which I consider trivial. I will elaborate if requested.

Simple and elegant solution!!

Chiang Jun Siang - 1 year, 5 months ago

Log in to reply

Thanks, glad you like it

Karan Chatrath - 1 year, 5 months ago
Patrick Corn
Jan 3, 2020

We have 1 1 + x 2 = 1 x 2 + x 4 arctan ( x ) = x 1 3 x 3 + 1 5 x 5 arctan ( x 7 ) = x 1 / 7 1 3 x 3 / 7 + 1 5 x 5 / 7 0 1 arctan ( x 7 ) d x = 7 8 x 8 / 7 7 10 1 3 x 10 / 7 + 7 12 1 5 x 12 / 7 0 1 = 7 1 8 7 3 10 + 7 5 12 = 1 1 1 8 1 3 + 1 10 + 1 5 1 12 \begin{aligned} \frac1{1+x^2} &= 1-x^2+x^4-\cdots \\ \arctan(x) &= x-\frac13 x^3 + \frac15 x^5 - \cdots \\ \arctan(\sqrt[7]{x}) &= x^{1/7} - \frac13 x^{3/7} + \frac15 x^{5/7} - \cdots \\ \int_0^1 \arctan(\sqrt[7]{x}) \, dx &= \frac78 x^{8/7} - \frac7{10} \frac13 x^{10/7} + \frac7{12} \frac15 x^{12/7} - \cdots \bigg|_0^1 \\ &= \frac7{1 \cdot 8} - \frac7{3 \cdot 10} + \frac7{5 \cdot 12} - \cdots \\ &= \frac11 - \frac18 -\frac13 + \frac1{10} + \frac15 - \frac1{12} - \cdots \end{aligned} Now 1 1 1 3 + 1 5 = π 4 , \frac11 - \frac13 + \frac15 - \cdots = \frac{\pi}4, and 1 8 + 1 10 1 12 + = 1 2 + 1 4 1 6 + ( 1 2 1 4 + 1 6 1 8 + 1 10 1 12 + ) = 5 12 + 1 2 ( 1 1 2 + 1 3 1 4 + ) = 5 12 + 1 2 ln ( 2 ) , \begin{aligned} -\frac18 + \frac1{10} - \frac1{12} + \cdots &= -\frac12 + \frac14 - \frac16 + \left( \frac12 - \frac14 + \frac16 - \frac18 + \frac1{10} - \frac1{12} + \cdots \right) \\ &= -\frac5{12} + \frac12 \left( 1 - \frac12 + \frac13 - \frac14 + \cdots \right) \\ &= -\frac5{12} + \frac12 \ln(2), \end{aligned} so the integral is π 4 5 12 + ln ( 2 ) 2 \frac{\pi}4-\frac5{12} + \frac{\ln(2)}2 and the answer is 2 + 2 + 1 + 4 + 5 + 12 = 26 . 2+2+1+4+5+12 = \fbox{26}.

(I have avoided difficult questions about the legality of rearranging terms in these conditionally convergent series because I am too lazy to resolve them!)

Trevor B.
Jan 3, 2020

Observe that x 7 \sqrt[7]{x} is invertible. This allows us to safely make the parametrization y = arctan t y=\arctan t and t = x 7 t=\sqrt[7]{x} (or x = t 7 . x=t^7. The following is a known result for integrals of parametrized variables: If y = F ( x ) y=F(x) where x = f ( t ) x=f(t) and y = g ( t ) y=g(t) , then a b F ( x ) d x = α β g ( t ) f ( t ) \int_a^bF(x)\ dx=\int_\alpha^\beta g(t)f'(t) where f ( α ) = a f(\alpha)=a and f ( β ) = b f(\beta)=b .

Setting f ( t ) = t 7 f(t)=t^7 and g ( t ) = arctan t g(t)=\arctan t yields the following:

0 1 7 x 6 arctan x d x = x 7 arctan x 0 1 0 1 x 7 x 2 + 1 d x = π 4 0 1 x 7 x 2 + 1 d x \int_0^17x^6\arctan x\ dx=x^7\arctan x|^1_0-\int_0^1\dfrac{x^7}{x^2+1}\ dx=\dfrac{\pi}{4}-\int_0^1\dfrac{x^7}{x^2+1}\ dx This can simply be solved with polynomial long division and a u u -substitution. 0 1 x 7 x 2 + 1 d x = 0 1 ( x 5 x 3 + x x x 2 + 1 ) d x = 1 6 1 4 + 1 2 1 2 1 2 d u u = 5 12 ln 2 2 \int_0^1\dfrac{x^7}{x^2+1}\ dx=\int_0^1\left(x^5-x^3+x-\dfrac{x}{x^2+1}\right)\ dx=\dfrac{1}{6}-\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{2}\int_1^2\dfrac{du}{u}=\dfrac{5}{12}-\dfrac{\ln2}{2} Thus, the overall integral is equal to ln 2 2 + π 4 5 12 . \dfrac{\ln2}{2}+\dfrac{\pi}{4}-\dfrac{5}{12}. { A , B , C , D , E , F } = { 2 , 2 , 1 , 4 , 5 , 12 } , \{A,B,C,D,E,F\}=\{2,2,1,4,5,12\}, so A + B + C + D + E + F = 26 . A+B+C+D+E+F=\boxed{26}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...