Not an AP or GP

Algebra Level 4

1 2 1 3 + 2 2 3 5 + 3 2 5 7 + + 50 0 2 999 1001 = ? \dfrac{1^2}{1 \cdot 3} + \dfrac {2^2}{3\cdot 5} + \dfrac{3^2}{5 \cdot 7} + \cdots + \dfrac{500^2}{999\cdot 1001} = \, ?

25250 1001 \dfrac{25250}{1001} 1250 1001 \dfrac{1250}{1001} 125250 1001 \dfrac{125250}{1001} 12500 2002 \dfrac{12500}{2002} 125250 2002 \dfrac{125250}{2002} 1002 1001 \dfrac{1002}{1001}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 19, 2017

S = 1 2 1 3 + 2 2 3 5 + 3 2 5 7 + . . . + 50 0 2 999 1001 = n = 1 500 n 2 ( 2 n 1 ) ( 2 n + 1 ) = n = 1 500 4 n 2 1 + 1 4 ( 2 n 1 ) ( 2 n + 1 ) = 1 4 n = 1 500 ( 2 n 1 ) ( 2 n + 1 ) + 1 ( 2 n 1 ) ( 2 n + 1 ) = 1 4 n = 1 500 ( 1 + 1 ( 2 n 1 ) ( 2 n + 1 ) ) = 1 4 n = 1 500 ( 1 + 1 2 [ 1 2 n 1 1 2 n + 1 ] ) = 1 4 ( 500 + 1 2 [ 1 1 1 1001 ] ) = 125250 1001 \begin{aligned} S & = \frac {1^2}{1 \cdot 3} + \frac {2^2}{3 \cdot 5} + \frac {3^2}{5 \cdot 7} + ... + \frac {500^2}{999 \cdot 1001} \\ & = \sum_{n=1}^{500} \frac {n^2}{(2n-1)(2n+1)} \\ & = \sum_{n=1}^{500} \frac {4n^2-1+1}{4(2n-1)(2n+1)} \\ & = \frac 14 \sum_{n=1}^{500} \frac {(2n-1)(2n+1)+1}{(2n-1)(2n+1)} \\ & = \frac 14 \sum_{n=1}^{500} \left( 1 + \frac 1{(2n-1)(2n+1)} \right) \\ & = \frac 14 \sum_{n=1}^{500} \left( 1 + \frac 12 \left[ \frac 1{2n-1} - \frac 1{2n+1} \right] \right) \\ & = \frac 14 \left( 500 + \frac 12 \left[ \frac 11 - \frac 1{1001} \right] \right) \\ & = \boxed{\dfrac {125250}{1001}} \end{aligned}

pls tell how you apply sigma in every question so easily

anshu garg - 4 years, 3 months ago
Anshu Garg
Feb 18, 2017

S= 1 2 \frac{1}{2} ( 1 1 \frac{1}{1} - 1 3 \frac{1}{3} )+ 4 2 \frac{4}{2} ( 1 3 \frac{1}{3} - 1 5 \frac{1}{5} )............................... 250000 2 \frac{250000}{2} ( 1 999 \frac{1}{999} - 1 1001 \frac{1}{1001} )

S=( 1 2 \frac{1}{2} {- 1 6 \frac{1}{6} + 4 6 \frac{4}{6} }{- 4 10 \frac{4}{10} + 9 10 \frac{9}{10} }...................................)

S=( 1 2 \frac{1}{2} ........................500 terms - 250000 2 \frac{250000}{2} ( 1 1001 \frac{1}{1001} )

S= 500 2 \frac{500}{2} - 250000 2002 \frac{250000}{2002}

S= 500500 250000 2002 \frac{500500-250000}{2002}

S= 250500 2002 \frac{250500}{2002}

S= 125250 1001 \frac{125250}{1001}

Same method

Lakshay Rana - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...