Not an easy limit.

Calculus Level 4

Evaluate the given limit:

lim n n ! 1 n n \displaystyle \lim_{{n}\to{\infty}} \dfrac{n!^{\frac{1}{n}}}{n}

Enter your answer to three decimal places.


The answer is 0.367.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ankith A Das
Apr 10, 2015

lim n [ n ! n n ] 1 / n lim n [ 1 × 2 × 3.... n n × n × n . . . . n ] 1 / n lim n [ 1 n × 2 n × 3 n . . . . n n ] 1 / n log A = lim n 1 n [ log 1 n × log 2 n . . . . . log n n ] = lim n r = 1 n 1 n log r n = 0 1 log x d x = [ x log x ] 0 1 0 1 x × 1 / x d x = 0 0 1 d x = 0 [ x ] 0 1 = 1 A = e 1 \displaystyle \lim _{ n\rightarrow \infty }{ { \left[ \dfrac { n! }{ { n }^{ n } } \right] }^{ 1/n } } \\ \Rightarrow \displaystyle \lim _{ n\rightarrow \infty }{ { \left[ \dfrac { 1\times 2\times 3....n }{ n\times n\times n....n } \right] }^{ 1/n } } \\ \Rightarrow \displaystyle \lim _{ n\rightarrow \infty }{ { \left[ \dfrac { 1 }{ n } \times \dfrac { 2 }{ n } \times \dfrac { 3 }{ n } ....\dfrac { n }{ n } \right] }^{ 1/n } } \\ \therefore \displaystyle \log { A } = \displaystyle \lim _{ n\rightarrow \infty }{ \dfrac { 1 }{ n } { \left[ \log { \dfrac { 1 }{ n } } \times \log { \dfrac { 2 }{ n } } .....\log { \dfrac { n }{ n } } \right] } } \\ = \displaystyle \lim _{ n\rightarrow \infty }{ \displaystyle \sum _{ r=1 }^{ n }{ \dfrac { 1 }{ n } \log { \dfrac { r }{ n } } } } \\ = \displaystyle \int _{ 0 }^{ 1 }{ \log { x } } dx={ \left[ x\log { x } \right] }_{ 0 }^{ 1 }- \displaystyle \int _{ 0 }^{ 1 }{ x\times 1/x\quad dx } \\ =0- \displaystyle \int _{ 0 }^{ 1 }{ dx } =0-{ \left[ x \right] }_{ 0 }^{ 1 }\quad =\quad -1\\ \therefore \quad A={ e }^{ -1 }

We can also use Stirling 's approximation.

Athul Nambolan - 6 years, 1 month ago

Log in to reply

what do you do of the big O term? btw i used it too.

Mayank Shrivastava - 6 years ago

Same thing here. Good solution.

Vishwak Srinivasan - 6 years, 2 months ago
Titouan Morvan
May 30, 2015

We can also use Cesaro's lemma with u n = n ! n n u_n=\frac{n!}{n^n} then u n + 1 u n = ( 1 1 n + 1 ) n \frac{u_{n+1}}{u_{n}}=(1-\frac{1}{n+1})^n which tends to e 1 e^{-1} and we're done

Fascinating solution.Very nicely done.

rajdeep brahma - 4 years, 2 months ago

Did the same way................btw I thought it was called Cauchy's second limit theorem

Arghyadeep Chatterjee - 2 years, 4 months ago
Rajdeep Brahma
Apr 4, 2017

The inequalities I often find useful are ( n e \frac{n}{e} )^n <n!<( n e \frac{n}{e} )^(n+1)
( n e \frac{n}{e} )^n<n!<( n e \frac{n}{e} )^(n+1)
These gives n ! ( 1 / n ) n \frac{n!^(1/n)}{n} →1/e
((1+ 1 n \frac{1}{n} )^(1/n)<e<(1+ 1 n \frac{1}{n} )^(n+1))


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...