An algebra problem by Syed Hamza Khalid

Algebra Level 3

Suppose x , y ( 2 , 2 ) x,y \in \!\, ( -2 , 2) and x y = 1 xy =-1 , then what is the minimum value of the expression below?

4 4 x 2 + 9 9 y 2 \large \frac{4}{4 - x^2} + \frac{9}{9 - y^2}

12 7 \frac{12}{7} 12 5 \frac{12}{5} 8 5 \frac{8}{5} 24 11 \frac{24}{11}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

X = 4 4 x 2 + 9 9 y 2 = 4 ( 9 y 2 ) + 9 ( 4 x 2 ) ( 4 x 2 ) ( 9 y 2 ) = 72 4 y 2 9 x 2 36 9 x 2 4 y 2 + x 2 y 2 Note that x y = 1 = 72 4 y 2 9 x 2 37 9 x 2 4 y 2 = 1 + 35 37 9 x 2 4 y 2 = 1 + 35 37 ( 9 x 2 + 12 x y + 4 y 2 ) + ( 12 ) = 1 + 35 25 ( 3 x + 2 y ) 2 Note that ( 3 x + 2 y ) 2 0 X 1 + 35 25 = 12 5 \begin{aligned} X & = \frac 4{4-x^2} + \frac 9{9-y^2} \\ & = \frac {4(9-y^2)+9(4-x^2)}{(4-x^2)(9-y^2)} \\ & = \frac {72-4y^2-9x^2}{36-9x^2-4y^2 +\color{#3D99F6} x^2y^2} & \small \color{#3D99F6} \text{Note that }xy = - 1 \\ & = \frac {72-4y^2-9x^2}{37-9x^2-4y^2} \\ & = 1 + \frac {35}{37-9x^2-4y^2} \\ & = 1 + \frac {35}{37-(9x^2+ {\color{#3D99F6}12xy} + 4y^2) + \color{#3D99F6}(-12)} \\ & = 1 + \frac {35}{25-\color{#3D99F6}(3x + 2y)^2} & \small \color{#3D99F6} \text{Note that }(3x + 2y)^2 \ge 0 \\ \implies X & \ge 1 + \frac {35}{25} = \boxed{\dfrac {12}5} \end{aligned}

And equality occurs when:

3 x + 2 y = 0 3 x = 2 y 3 x 2 = 2 x y = 2 \begin{aligned} 3x + 2y & = 0 \\ 3x & = - 2y \\ 3x^2 & = - 2xy = 2 \end{aligned}

x = ± 2 3 y = 3 2 \implies x = \pm \sqrt {\frac 23} \implies y = \mp \sqrt{\frac 32} . Note that x , y ( 2 , 2 ) x, y \in (-2, 2) , therefore the solution is valid.

"And* equality occurs"

Isn't it supposed to be ( An equality occurs )

Syed Hamza Khalid - 3 years, 9 months ago

Log in to reply

No, it should be "and".

Chew-Seong Cheong - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...