Asteroid sum

Calculus Level 4

lim n r = 0 n r 2 n 9 2 n 3 r 3 \lim_{n\to\infty } \sum_{r=0}^{n} \dfrac{r^{2}}{n^{\frac{9}{2}}}\sqrt{n^{3} - r^{3}}

If the limit above can be expressed in the form a b \dfrac{a}{b} , where a a and b b are coprime natural numbers, find the value of a + b + a b a + b + ab .

For more problems by me, click here .


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Raj Magesh
Apr 10, 2015

We can rewrite the given summation as:

lim n 1 n r = 0 n ( r n ) 2 1 ( r n ) 3 \lim_{n \to \infty} \dfrac{1}{n} \sum_{r=0}^{n} \left(\dfrac{r}{n}\right)^2 \sqrt{1-\left(\dfrac{r}{n}\right)^3}

This is a Riemann sum, and can be expressed as the integral:

I = 0 1 x 2 1 x 3 d x I = \int_{0}^{1} x^2 \sqrt{1-x^3} dx

The value of this integral is 2 9 \frac{2}{9} and so the required answer is:

2 + 9 + 2 × 9 = 29 2+9+2 \times 9 = \boxed{29}

Moderator note:

Nice use of Riemann Sum! You should clarify that the integral can be easily solved using a suitable substitution.

Lol. Made it look so easy.

Vishwak Srinivasan - 6 years, 2 months ago

Log in to reply

"Look" is the operative word. :P

Raj Magesh - 6 years, 2 months ago
Chew-Seong Cheong
Aug 27, 2019

L = lim n r = 0 n r 2 n 9 2 n 3 r 3 = 1 n lim n r = 0 n ( r n ) 2 1 ( r n ) 3 It is a Riemann sum = 0 1 x 2 1 x 3 d x lim n 1 n k = a b f ( k n ) = lim n a n b n f ( x ) d x = 0 π 2 2 3 sin θ cos 2 θ d θ Let x = sin 2 3 θ d x = 2 3 sin 1 3 θ cos θ d θ = 2 3 0 1 u 2 d u Let u = cos θ d u = sin θ d θ = 2 9 \begin{aligned} L & = \lim_{n \to \infty} \sum_{r=0}^n \frac {r^2}{n^\frac 92} \sqrt{n^3-r^3} \\ & = \frac 1n \lim_{n \to \infty} \sum_{r=0}^n \left(\frac rn\right)^2 \sqrt{1-\left(\frac rn\right)^3} & \small \color{#3D99F6} \text{It is a Riemann sum} \\ & = \int_0^1 x^2 \sqrt{1-x^3} dx & \small \color{#3D99F6} \lim_{n \to \infty} \frac 1n \sum_{k=a}^b f \left(\frac kn\right) = \lim_{n \to \infty} \int_\frac an^\frac bn f(x) \ dx \\ & = \int_0^\frac \pi 2 \frac 23 \sin \theta \cos^2 \theta \ d\theta & \small \color{#3D99F6} \text{Let }x = \sin^\frac 23 \theta \implies dx = \frac 23 \sin^{-\frac 13} \theta \cos \theta \ d\theta \\ & = \frac 23 \int_0^1 u^2\ du & \small \color{#3D99F6} \text{Let }u = \cos \theta \implies du = - \sin \theta \ d\theta \\ & = \frac 29 \end{aligned}

Therefore a + b + a b = 2 + 9 + 2 × 9 = 29 a+b+ab = 2+9+2\times 9 = \boxed{29} .


Reference: Riemann sum

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...