Not an inequality

Algebra Level 2

Let a a , b b , and c c be three real numbers such that a + b + c = 1 a + b + c = -1 and a b c = 1 abc = 1 . Find the value of the expression:

a 4 3 a + b 4 3 b + c 4 3 c \frac{a^4 - 3}a + \frac{b^4 - 3}b + \frac{c^4 - 3}c


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We know that for any real numbers a , b a\,,\,b\, and c \,c ,

a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) a 3 + b 3 + c 3 3 ( 1 ) = ( 1 ) ( a 2 + b 2 + c 2 a b b c c a ) a 3 + b 3 + c 3 3 = a 2 b 2 c 2 + a b + b c + c a a 3 + b 3 + c 3 3 a b 3 b c 3 c a = 3 a 2 + b 2 + c 2 2 a b 2 b c 2 c a a 3 + b 3 + c 3 3 a b 3 b c 3 c a = 3 ( a + b + c ) 2 a 3 + b 3 + c 3 3 c a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)\newline\Rightarrow a^3 + b^3 + c^3 - 3(1) = (-1)(a^2 + b^2 + c^2 - ab - bc - ca)\newline\Rightarrow a^3 + b^3 + c^3 - 3 = -a^2 - b^2 - c^2 + ab + bc + ca\newline\Rightarrow a^3 + b^3 + c^3 - 3ab - 3bc - 3ca = 3 - a^2 + b^2 + c^2 - 2ab - 2bc - 2ca\newline \Rightarrow a^3 + b^3 + c^3 - 3ab - 3bc - 3ca = 3 - (a + b + c)^2 \newline\Rightarrow a^3 + b^3 + c^3 - \Large\frac{3}{c} 3 a - \Large\frac{3}{a} 3 b - \Large\frac{3}{b} = 3 ( 1 ) 2 = 2 = 3 - (-1)^2 = 2

a 4 3 a \Rightarrow \Large\frac{a^4 - 3}{a} + b 4 3 b + \Large\frac{b^4 - 3}{b} + c 4 3 c + \Large\frac{c^4 - 3}{c} = 2 = 2

No need to add space and separate the formula with \ ( \ ) just use \ [ and \ ]. I have amended your problem. I wonder if you can still edit it to see. If not look at below. This was I have done. LaTex is much easier to use. Of course we have to assume its creator are smart.

Chew-Seong Cheong - 1 year, 1 month ago
Chew-Seong Cheong
Apr 17, 2020

X = a 4 3 a + b 4 3 b + c 4 3 c = a 3 + b 3 + c 3 3 ( 1 a + 1 b + 1 c ) = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) + 3 a b c 3 ( 1 a + 1 b + 1 c ) = ( a + b + c ) ( ( a + b + c ) 2 3 ( a b + b c + c a ) ) + 3 a b c 3 ( 1 a + 1 b + 1 c ) = ( a + b + c ) ( ( a + b + c ) 2 3 a b c ( 1 a + 1 b + 1 c ) ) + 3 a b c 3 ( 1 a + 1 b + 1 c ) = ( 1 ) ( ( 1 ) 2 3 ( 1 a + 1 b + 1 c ) ) + 3 3 ( 1 a + 1 b + 1 c ) = 2 \begin{aligned} X & = \frac {a^4-3}a + \frac {b^4-3}b + \frac {c^4-3}c \\ & = a^3 + b^3 + c^3 - 3\left(\frac 1a+\frac 1b+\frac 1c\right) \\ & = (a+b+c)\left(a^2+b^2+c^2 - ab-bc-ca\right) + 3abc - 3\left(\frac 1a+\frac 1b+\frac 1c\right) \\ & = (a+b+c)\left((a+b+c)^2 -3(ab+bc+ca) \right) + 3abc - 3\left(\frac 1a+\frac 1b+\frac 1c\right) \\ & = (a+b+c)\left((a+b+c)^2 -3abc\left(\frac 1a+\frac 1b+\frac 1c\right) \right) + 3abc - 3\left(\frac 1a+\frac 1b+\frac 1c\right) \\ & = (-1)\left((-1)^2 -3\left(\frac 1a+\frac 1b+\frac 1c \right) \right) + 3 - 3\left(\frac 1a+\frac 1b+\frac 1c\right) \\ & = \boxed 2 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...