Let a , b , and c be three real numbers such that a + b + c = − 1 and a b c = 1 . Find the value of the expression:
a a 4 − 3 + b b 4 − 3 + c c 4 − 3
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
No need to add space and separate the formula with \ ( \ ) just use \ [ and \ ]. I have amended your problem. I wonder if you can still edit it to see. If not look at below. This was I have done. LaTex is much easier to use. Of course we have to assume its creator are smart.
X = a a 4 − 3 + b b 4 − 3 + c c 4 − 3 = a 3 + b 3 + c 3 − 3 ( a 1 + b 1 + c 1 ) = ( a + b + c ) ( a 2 + b 2 + c 2 − a b − b c − c a ) + 3 a b c − 3 ( a 1 + b 1 + c 1 ) = ( a + b + c ) ( ( a + b + c ) 2 − 3 ( a b + b c + c a ) ) + 3 a b c − 3 ( a 1 + b 1 + c 1 ) = ( a + b + c ) ( ( a + b + c ) 2 − 3 a b c ( a 1 + b 1 + c 1 ) ) + 3 a b c − 3 ( a 1 + b 1 + c 1 ) = ( − 1 ) ( ( − 1 ) 2 − 3 ( a 1 + b 1 + c 1 ) ) + 3 − 3 ( a 1 + b 1 + c 1 ) = 2
Problem Loading...
Note Loading...
Set Loading...
We know that for any real numbers a , b and c ,
a 3 + b 3 + c 3 − 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 − a b − b c − c a ) ⇒ a 3 + b 3 + c 3 − 3 ( 1 ) = ( − 1 ) ( a 2 + b 2 + c 2 − a b − b c − c a ) ⇒ a 3 + b 3 + c 3 − 3 = − a 2 − b 2 − c 2 + a b + b c + c a ⇒ a 3 + b 3 + c 3 − 3 a b − 3 b c − 3 c a = 3 − a 2 + b 2 + c 2 − 2 a b − 2 b c − 2 c a ⇒ a 3 + b 3 + c 3 − 3 a b − 3 b c − 3 c a = 3 − ( a + b + c ) 2 ⇒ a 3 + b 3 + c 3 − c 3 − a 3 − b 3 = 3 − ( − 1 ) 2 = 2
⇒ a a 4 − 3 + b b 4 − 3 + c c 4 − 3 = 2