Scary or Beautiful?

Calculus Level 5

d 3 x d y 3 ( d y d x ) 5 = P ( d 2 y d x 2 ) 2 d y d x ( d 3 y d x 3 ) , P = ? \large \dfrac{d^3x}{dy^3}\left( \dfrac{dy}{dx}\right)^5 = \mathcal{P} \left( \dfrac{d^2y}{dx^2}\right)^2 - \dfrac{dy}{dx}\left(\dfrac{d^3y}{dx^3}\right), \qquad \mathcal{P} = ?

4 2 0 1 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 1, 2018

We have d x d y = 1 y d 2 x d y 2 y = y ( y ) 2 d 2 x d y 2 = y ( y ) 3 d 3 x d y 3 y = 3 ( y ) 2 ( y ) 4 y ( y ) 3 d 3 x d y 3 ( y ) 5 = 3 ( y ) 2 y y \begin{aligned} \frac{dx}{dy} & = \; \frac{1}{y'} \\ \frac{d^2x}{dy^2} y' & = \; -\frac{y''}{(y')^2} \\ \frac{d^2x}{dy^2} & = \; - \frac{y''}{(y')^3} \\ \frac{d^3x}{dy^3}y' & = \; \frac{3(y'')^2}{(y')^4} - \frac{y'''}{(y')^3} \\ \frac{d^3x}{dy^3}(y')^5 &= \; 3(y'')^2 - y'y''' \end{aligned} by repeated differentiation with respect to x x and use of the Chain Rule. Thus P = 3 \mathcal{P} = \boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...