Not as complicated as it look

Algebra Level 3

x 9 x 7 x 6 x 5 + x 4 + x 3 + x 2 1 x^9 - x^7 - x^6 - x^5 + x^4 + x^3 + x^2- 1

Given that the above expression completely factors to ( x + a ) b ( x + c ) d ( x d + c ) ( x d + x + c ) (x+a)^b (x+c)^d (x^d + c)(x^d + x+ c) for integers a , b , c , d a,b,c,d , find a + b + c + d a+b+c+d .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Saurav Pal
Apr 12, 2015

x 9 x 7 x 6 x 5 + x 4 + x 3 + x 2 1 = x^{9}-x^{7}-x^{6}-x^{5}+x^{4}+x^{3}+x^{2}-1= ( x 9 x 7 ) ( x 6 x 4 ) ( x 5 x 3 ) + ( x 2 1 ) = (x^{9}-x^{7})-(x^{6}-x^{4})-(x^{5}-x^{3})+(x^{2}-1)= x 7 ( x 2 1 ) x 4 ( x 2 1 ) x 3 ( x 2 1 ) + ( x 2 1 ) = x^{7}(x^{2}-1)-x^{4}(x^{2}-1)-x^{3}(x^{2}-1)+(x^{2}-1)= ( x 7 x 4 x 3 + 1 ) ( x 2 1 ) = (x^{7}-x^{4}-x^{3}+1)(x^{2}-1)= [ ( x 4 ) ( x 3 1 ) ( x 3 1 ) ] [ x 2 1 ] = [(x^{4})(x^{3}-1)-(x^{3}-1)][x^{2}-1]= ( x 4 1 ) ( x 3 1 ) ( x 2 1 ) = (x^{4}-1)(x^{3}-1)(x^{2}-1)= ( x 1 ) 3 ( x + 1 ) 2 ( x 2 + 1 ) ( x 2 + x + 1 ) (x-1)^{3}(x+1)^{2}(x^{2}+1)(x^{2}+x+1) \Rightarrow a = 1 a=-1 , b = 3 b=3 , c = 1 c=1 , d = 2 d=2 . . . . . . . . . . . . . . . . . . . . . . . . . \therefore a + b + c + d = 5 a+b+c+d=\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{5}}}}}}} .

Excellent!

Daniel Ferreira
Apr 12, 2015

( x 9 1 ) + ( x 7 + x 4 ) + ( x 6 + x 3 ) + ( x 5 + x 2 ) = [ ( x 3 ) 3 1 ] x 4 ( x 3 1 ) x 3 ( x 3 1 ) x 2 ( x 3 1 ) = ( x 3 1 ) ( x 6 + x 3 + 1 ) ( x 3 1 ) ( x 4 + x 3 + x 2 ) = ( x 3 1 ) [ x 6 + x 3 + 1 x 4 x 3 x 2 ] = ( x 3 1 ) ( x 6 x 4 x 2 + 1 ) = ( x 1 ) ( x 2 + x + 1 ) [ x 4 ( x 2 1 ) 1 ( x 2 1 ) ] = ( x 1 ) ( x 2 + x + 1 ) ( x 4 1 ) ( x 2 1 ) = ( x 1 ) ( x 2 + x + 1 ) ( x 2 + 1 ) ( x 2 1 ) ( x + 1 ) ( x 1 ) = ( x 1 ) 3 ( x + 1 ) 2 ( x 2 + 1 ) ( x 2 + x + 1 ) \\ (x^9 - 1) + (- x^7 + x^4) + (- x^6 + x^3) + (- x^5 + x^2) = \\\\ [(x^3)^3 - 1] - x^4(x^3 - 1) - x^3(x^3 - 1) - x^2(x^3 - 1) = \\\\ (x^3 - 1)(x^6 + x^3 + 1) - (x^3 - 1)(x^4 + x^3 + x^2) = \\\\ (x^3 - 1)[x^6 + \cancel{x^3} + 1 - x^4 - \cancel{x^3} - x^2] = \\\\ (x^3 - 1)(x^6 - x^4 - x^2 + 1) = \\\\ (x - 1)(x^2 + x + 1)[x^4(x^2 - 1) - 1(x^2 - 1)] = \\\\ (x - 1)(x^2 + x + 1)(x^4 - 1)(x^2 - 1) = \\\\ (x - 1)(x^2 + x + 1)(x^2 + 1)(x^2 - 1)(x + 1)(x - 1) = \\\\ \boxed{(x - 1)^3(x + 1)^2(x^2 + 1)(x^2 + x + 1)}

Isto posto, temos que { a = 1 b = 3 c = 1 d = 2 \begin{cases} a = - 1 \\ b = 3 \\ c = 1 \\ d = 2\end{cases} .

Com efeito,

a + b + c + d = 1 + 3 + 1 + 2 a + b + c + d = 5 a + b + c + d = - 1 + 3 + 1 + 2 \\\\ \boxed{\boxed{a + b + c + d = 5}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...