x 9 − x 7 − x 6 − x 5 + x 4 + x 3 + x 2 − 1
Given that the above expression completely factors to ( x + a ) b ( x + c ) d ( x d + c ) ( x d + x + c ) for integers a , b , c , d , find a + b + c + d .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Excellent!
( x 9 − 1 ) + ( − x 7 + x 4 ) + ( − x 6 + x 3 ) + ( − x 5 + x 2 ) = [ ( x 3 ) 3 − 1 ] − x 4 ( x 3 − 1 ) − x 3 ( x 3 − 1 ) − x 2 ( x 3 − 1 ) = ( x 3 − 1 ) ( x 6 + x 3 + 1 ) − ( x 3 − 1 ) ( x 4 + x 3 + x 2 ) = ( x 3 − 1 ) [ x 6 + x 3 + 1 − x 4 − x 3 − x 2 ] = ( x 3 − 1 ) ( x 6 − x 4 − x 2 + 1 ) = ( x − 1 ) ( x 2 + x + 1 ) [ x 4 ( x 2 − 1 ) − 1 ( x 2 − 1 ) ] = ( x − 1 ) ( x 2 + x + 1 ) ( x 4 − 1 ) ( x 2 − 1 ) = ( x − 1 ) ( x 2 + x + 1 ) ( x 2 + 1 ) ( x 2 − 1 ) ( x + 1 ) ( x − 1 ) = ( x − 1 ) 3 ( x + 1 ) 2 ( x 2 + 1 ) ( x 2 + x + 1 )
Isto posto, temos que ⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ a = − 1 b = 3 c = 1 d = 2 .
Com efeito,
a + b + c + d = − 1 + 3 + 1 + 2 a + b + c + d = 5
Problem Loading...
Note Loading...
Set Loading...
x 9 − x 7 − x 6 − x 5 + x 4 + x 3 + x 2 − 1 = ( x 9 − x 7 ) − ( x 6 − x 4 ) − ( x 5 − x 3 ) + ( x 2 − 1 ) = x 7 ( x 2 − 1 ) − x 4 ( x 2 − 1 ) − x 3 ( x 2 − 1 ) + ( x 2 − 1 ) = ( x 7 − x 4 − x 3 + 1 ) ( x 2 − 1 ) = [ ( x 4 ) ( x 3 − 1 ) − ( x 3 − 1 ) ] [ x 2 − 1 ] = ( x 4 − 1 ) ( x 3 − 1 ) ( x 2 − 1 ) = ( x − 1 ) 3 ( x + 1 ) 2 ( x 2 + 1 ) ( x 2 + x + 1 ) ⇒ a = − 1 , b = 3 , c = 1 , d = 2 . . . . . . . . . . . . . ∴ a + b + c + d = 5 .