Not as complicated as it looks

Algebra Level 3

( f ( 1 ) g ( 1 ) k ( 1 ) ) 1 + ( f ( 2 ) g ( 2 ) k ( 2 ) ) 1 + ( f ( 3 ) g ( 3 ) k ( 3 ) ) 1 + + ( f ( 100 ) g ( 100 ) k ( 100 ) ) 1 \large \left ( \dfrac{\frac{f(1)}{g(1)}}{k(1)} \right )^{-1}+\left ( \dfrac{\frac{f(2)}{g(2)}}{k(2)} \right )^{-1}+\left ( \dfrac{\frac{f(3)}{g(3)}}{k(3)} \right )^{-1}+\cdots +\left ( \dfrac{\frac{f(100)}{g(100)}}{k(100)} \right )^{-1}

Let f ( x ) = 1 3 + 2 3 + 3 3 + + x 3 f(x)=1^{3}+2^{3}+3^{3}+\cdots +x^{3} ,
g ( x ) = 1 2 + 2 2 + 3 2 + + x 2 g(x)=1^{2}+2^{2}+3^{2}+\cdots+x^{2} , and
k ( x ) = 1 + 2 + 3 + + x k(x)=1+2+3+\cdots+x .

Compute the expression above.


The answer is 3400.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aaron Tsai
May 6, 2016

Note that f ( x ) = x 2 ( x + 1 ) 2 4 f(x)=\dfrac{x^{2}(x+1)^{2}}{4} , g ( x ) = x ( x + 1 ) ( 2 x + 1 ) 6 g(x)=\dfrac{x(x+1)(2x+1)}{6} , and k ( x ) = x ( x + 1 ) 2 k(x)=\dfrac{x(x+1)}{2} .

So,

( f ( x ) g ( x ) k ( x ) ) 1 = ( x 2 ( x + 1 ) 2 4 6 x ( x + 1 ) ( 2 x + 1 ) x ( x + 1 ) 2 ) 1 = ( 3 x ( x + 1 ) 2 ( 2 x + 1 ) 2 x ( x + 1 ) ) 1 \left ( \large \dfrac{\frac{f(x)}{g(x)}}{k(x)} \right )^{-1}=\left ( \large \dfrac{\frac{x^{2}(x+1)^{2}}{4}\cdot \frac{6}{x(x+1)(2x+1)}}{\dfrac{x(x+1)}{2}} \right )^{-1}=\left ( \dfrac{3x(x+1)}{2(2x+1)}\cdot \dfrac{2}{x(x+1)} \right )^{-1}

= ( 3 2 x + 1 ) 1 = 2 x + 1 3 =\left ( \dfrac{3}{2x+1} \right )^{-1}=\dfrac{2x+1}{3}

So, ( f ( 1 ) g ( 1 ) k ( 1 ) ) 1 + ( f ( 2 ) g ( 2 ) k ( 2 ) ) 1 + ( f ( 3 ) g ( 3 ) k ( 3 ) ) 1 + + ( f ( 100 ) g ( 100 ) k ( 100 ) ) 1 \large \left ( \dfrac{\frac{f(1)}{g(1)}}{k(1)} \right )^{-1}+\left ( \dfrac{\frac{f(2)}{g(2)}}{k(2)} \right )^{-1}+\left ( \dfrac{\frac{f(3)}{g(3)}}{k(3)} \right )^{-1}+\cdots +\left ( \dfrac{\frac{f(100)}{g(100)}}{k(100)} \right )^{-1} becomes

3 3 + 3 + 2 3 + 3 + 4 3 + + 3 + 198 3 \dfrac{3}{3}+\dfrac{3+2}{3}+\dfrac{3+4}{3}+\cdots+\dfrac{3+198}{3} , which simplifies to

300 + 9900 3 = 3400 \dfrac{300+9900}{3}=\boxed{3400} .

Chew-Seong Cheong
Jun 27, 2016

S = x = 1 100 ( f ( x ) g ( x ) k ( x ) ) 1 = x = 1 100 ( x 2 ( x + 1 ) 2 2 2 6 x ( x + 1 ) ( 2 x + 1 ) x ( x + 1 ) 2 ) 1 = x = 1 100 ( x 2 ( x + 1 ) 2 2 2 6 x ( x + 1 ) ( 2 x + 1 ) 2 x ( x + 1 ) ) 1 = x = 1 100 ( 3 2 x + 1 ) 1 = x = 1 100 2 x + 1 3 = 1 3 x = 1 100 ( 2 x + 1 ) = 1 3 ( 100 ( 101 ) + 100 ) = 3400 \begin{aligned} S & = \sum_{x=1}^{100} \left(\frac {\frac {f(x)}{g(x)}}{k(x)}\right)^{-1} \\ & = \sum_{x=1}^{100} \left(\frac {\frac{x^2(x+1)^2}{2^2} \cdot \frac 6{x(x+1)(2x+1)}}{\frac {x(x+1)}2}\right)^{-1} \\ & = \sum_{x=1}^{100} \left(\frac{x^2(x+1)^2}{2^2} \cdot \frac 6{x(x+1)(2x+1)} \cdot \frac 2{x(x+1)} \right)^{-1} \\ & = \sum_{x=1}^{100} \left(\frac 3{2x+1} \right)^{-1} \\ & = \sum_{x=1}^{100} \frac {2x+1}3 \\ & = \frac 13 \sum_{x=1}^{100} (2x+1) \\ & = \frac 13 (100(101) + 100) \\ & = \boxed{3400} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...