Evaluate ∫ 0 ∞ sin ( x 2 1 ) d x . If the answer is of the form A π , find A .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
My solution probably is not fully correct, but here I go. Define for t < 0 I ( t ) = ∫ 0 ∞ e t / x 2 sin ( x 2 1 ) d x , then I ′ ( t ) = ∫ 0 ∞ x 2 e t / x 2 sin ( x 2 1 ) d x . Substitute u = x 1 , then d u = − x 2 1 d x , so that I ′ ( t ) = − ∫ ∞ 0 e t u 2 sin ( u 2 ) d u = ∫ 0 ∞ e t u 2 sin ( u 2 ) d u . Use that sin ( z ) = 2 i e z i − e − z i , for z ∈ C , to get that I ′ ( t ) = 2 i 1 ∫ 0 ∞ e t u 2 ⋅ ( e u 2 i − e − u 2 i ) d u = 2 i 1 ∫ 0 ∞ e ( t + i ) u 2 − e ( t − i ) u 2 ) d u . Now, use that ∫ 0 ∞ e − z x 2 d x = 2 z π for any complex number z , such that R e ( z ) > 0 , to notice that I ′ ( t ) = 4 i π ( − ( t + i ) 1 − i − t 1 ) . Now, note that I ( t ) = 4 i π ∫ ( − ( t + i ) 1 − i − t 1 ) d t = 2 i π ( i − t − − ( t + i ) ) + C . Now, use that if t → − ∞ , then I ( t ) → 0 , from which follows that C = 0 after doing some work, so that I ( t ) = 2 i π ( i − t − − ( t + i ) ) We can now conclude that ∫ 0 ∞ sin ( x 2 1 ) d x = t ↑ 0 lim I ( t ) = 2 i π ( i − − i ) = π ⋅ 2 i e 4 i π − e 4 − i π = π ⋅ sin ( 4 π ) = 2 π , so that A = 2 .
This is a "sort-of" solution.
∫ sin ( x 2 1 ) d x ⇒ x sin ( x 2 1 ) − 2 π C ( x π 2 )
x → 0 lim x sin ( x 2 1 ) ⇒ 0 and x → ∞ lim x sin ( x 2 1 ) ⇒ 0
x → 0 lim C ( x ) ⇒ 0 and x → ∞ lim C ( x ) ⇒ 2 1 assuming that 0 1 = ∞ when, in fact, its sign is dependent on the approach direction.
− ( − 2 π ) 2 1 ⇒ 2 π
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 ∞ sin ( x 2 1 ) d x = ∫ 0 ∞ x 2 sin ( x 2 ) d x = − x sin ( x 2 ) ∣ ∣ ∣ ∣ 0 ∞ + ∫ 0 ∞ 2 cos ( x 2 ) d x = − 0 + x → 0 lim x sin ( x 2 ) + 2 π C ( ∞ ) = x → 0 lim 1 2 x cos ( x 2 ) + 2 π = 2 π By ∫ 0 ∞ f ( x ) d x = ∫ 0 ∞ x 2 f ( x 1 ) d x By integration by parts Fresnel integral C ( u ) = ∫ 0 u cos ( 2 π x 2 ) d x By L’H o ˆ pital’s rule Note that C ( ∞ ) = 2 1
Therefore A = 2 .