A calculus problem by คลุง แจ็ค

Calculus Level 4

Evaluate 0 sin ( 1 x 2 ) d x \displaystyle \int_{0}^{\infty} \sin \left(\frac{1}{x^{2}}\right) dx . If the answer is of the form π A \displaystyle \sqrt{\dfrac{\pi}{A}} , find A A .

Related problem


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 11, 2019

I = 0 sin ( 1 x 2 ) d x By 0 f ( x ) d x = 0 f ( 1 x ) x 2 d x = 0 sin ( x 2 ) x 2 d x By integration by parts = sin ( x 2 ) x 0 + 0 2 cos ( x 2 ) d x Fresnel integral C ( u ) = 0 u cos ( 2 π x 2 ) d x = 0 + lim x 0 sin ( x 2 ) x + 2 π C ( ) By L’H o ˆ pital’s rule = lim x 0 2 x cos ( x 2 ) 1 + π 2 Note that C ( ) = 1 2 = π 2 \begin{aligned} I & = \int_0^\infty \sin \left(\frac 1{x^2} \right) dx & \small \color{#3D99F6} \text{By }\int_0^\infty f(x)\ dx = \int_0^\infty \frac {f\left(\frac 1x \right)}{x^2}\ dx \\ & = \int_0^\infty \frac {\sin \left(x^2 \right)}{x^2} dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = - \frac {\sin (x^2)}x \ \bigg|_0^\infty + \color{#3D99F6} \int_0^\infty 2\cos (x^2)\ dx & \small \color{#3D99F6} \text{Fresnel integral } C(u) = \int_0 ^u \cos \left(2\pi x^2 \right) dx \\ & = - 0 + {\color{#D61F06} \lim_{x \to 0} \frac {\sin (x^2)}x} + \color{#3D99F6} \sqrt{2\pi} C (\infty) & \small \color{#D61F06} \text{By L'Hôpital's rule} \\ & = {\color{#D61F06} \lim_{x \to 0} \frac {2x\cos (x^2)}1} + \color{#3D99F6} \sqrt{\frac \pi 2} & \small \color{#3D99F6} \text{Note that }C (\infty) = \frac 12 \\ & = \sqrt{\frac \pi 2} \end{aligned}

Therefore A = 2 A = \boxed 2 .

Joël Ganesh
Sep 2, 2019

My solution probably is not fully correct, but here I go. Define for t < 0 t < 0 I ( t ) = 0 e t / x 2 sin ( 1 x 2 ) d x , I(t) = \int_0^{\infty} e^{t/x^2}\sin\left(\frac{1}{x^2}\right)\mathrm{d}x, then I ( t ) = 0 e t / x 2 sin ( 1 x 2 ) x 2 d x . I'(t) = \int_0^{\infty} \frac{e^{t/x^2}\sin\left(\frac{1}{x^2}\right)}{x^2}\mathrm{d}x. Substitute u = 1 x u = \frac{1}{x} , then d u = 1 x 2 d x , \mathrm{d}u = -\frac{1}{x^2}\mathrm{d}x, so that I ( t ) = 0 e t u 2 sin ( u 2 ) d u = 0 e t u 2 sin ( u 2 ) d u . I'(t) = -\int_{\infty}^0 e^{tu^2}\sin\left(u^2\right)\mathrm{d}u = \int_0^\infty e^{tu^2}\sin\left(u^2\right)\mathrm{d}u. Use that sin ( z ) = e z i e z i 2 i , \sin(z) = \frac{e^{zi} - e^{-zi}}{2i}, for z C z \in \mathbb{C} , to get that I ( t ) = 1 2 i 0 e t u 2 ( e u 2 i e u 2 i ) d u = 1 2 i 0 e ( t + i ) u 2 e ( t i ) u 2 ) d u . I'(t) = \frac{1}{2i}\int_0^\infty e^{tu^2} \cdot (e^{u^2i} - e^{-u^2i}) \mathrm{d}u = \frac{1}{2i}\int_0^\infty e^{(t+i)u^2} - e^{(t-i)u^2}) \mathrm{d}u. Now, use that 0 e z x 2 d x = π 2 z \int_0^{\infty} e^{-zx^2} \mathrm{d}x = \frac{\sqrt{\pi}}{2\sqrt{z}} for any complex number z z , such that R e ( z ) > 0 \mathrm{Re}(z) > 0 , to notice that I ( t ) = π 4 i ( 1 ( t + i ) 1 i t ) . I'(t) = \frac{\sqrt{\pi}}{4i}\left(\frac{1}{\sqrt{-(t+i)}} - \frac{1}{\sqrt{i-t}}\right). Now, note that I ( t ) = π 4 i ( 1 ( t + i ) 1 i t ) d t = π 2 i ( i t ( t + i ) ) + C . I(t) = \frac{\sqrt{\pi}}{4i} \int \left(\frac{1}{\sqrt{-(t+i)}} - \frac{1}{\sqrt{i-t}}\right) \mathrm{d}t = \frac{\sqrt{\pi}}{2i}\left(\sqrt{i-t} - \sqrt{-(t+i)}\right) + C. Now, use that if t t \to -\infty , then I ( t ) 0 I(t) \to 0 , from which follows that C = 0 C = 0 after doing some work, so that I ( t ) = π 2 i ( i t ( t + i ) ) I(t) = \frac{\sqrt{\pi}}{2i}\left(\sqrt{i-t} - \sqrt{-(t+i)}\right) We can now conclude that 0 sin ( 1 x 2 ) d x = lim t 0 I ( t ) = π 2 i ( i i ) = π e i π 4 e i π 4 2 i = π sin ( π 4 ) = π 2 , so that A = 2 . \int_0^\infty \sin\left(\frac{1}{x^2}\right)\mathrm{d}x = \lim_{t \, \uparrow \, 0} I(t) = \frac{\sqrt{\pi}}{2i}\left(\sqrt{i} - \sqrt{-i}\right) = \sqrt{\pi} \cdot \frac{e^{\frac{i\pi}{4}}-e^{\frac{-i\pi}{4}}}{2i} = \sqrt{\pi} \cdot \sin\left(\frac{\pi}{4}\right) = \sqrt{\frac{\pi}{2}}, \text{ so that } \boxed{A = 2}.

This is a "sort-of" solution.

sin ( 1 x 2 ) d x x sin ( 1 x 2 ) 2 π C ( 2 π x ) \int \sin \left(\frac{1}{x^2}\right) \, dx \Rightarrow x \sin \left(\frac{1}{x^2}\right)-\sqrt{2 \pi } C\left(\frac{\sqrt{\frac{2}{\pi }}}{x}\right)

lim x 0 x sin ( 1 x 2 ) 0 \underset{x\to 0}{\text{lim}}\,x \sin \left(\frac{1}{x^2}\right)\Rightarrow 0 and lim x x sin ( 1 x 2 ) 0 \underset{x\to \infty }{\text{lim}}\,x \sin \left(\frac{1}{x^2}\right)\Rightarrow 0

lim x 0 C ( x ) 0 \underset{x\to 0}{\text{lim}}\,C(x)\Rightarrow 0 and lim x C ( x ) 1 2 \underset{x\to \infty }{\text{lim}}\,C(x)\Rightarrow \frac12 assuming that 1 0 = \frac10=\infty when, in fact, its sign is dependent on the approach direction.

( 2 π ) 1 2 π 2 -(-\sqrt{2\pi})\frac12\Rightarrow \sqrt{\frac{\pi}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...