Infinite Telescoping Product

Calculus Level 2

k = 0 ( 1 + 1 2 2 k ) = ? \large \prod_{k=0}^\infty \left( 1 + \dfrac1{2^{2^k}} \right) = \, ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We'll look first at the partial product

k = 0 N ( 1 + 1 2 2 k ) = ( 1 + 1 2 ) ( 1 + 1 4 ) ( 1 + 1 16 ) . . . . ( 1 + 1 2 2 N ) \displaystyle\prod_{k=0}^{N} \left(1 + \dfrac{1}{2^{2^{k}}}\right) = \left(1 + \dfrac{1}{2}\right)\left(1 + \dfrac{1}{4}\right)\left(1 + \dfrac{1}{16}\right) .... \left(1 + \dfrac{1}{2^{2^{N}}}\right) .

Now multiply this product by 1 1 in the form 1 1 2 1 1 2 = 2 ( 1 1 2 ) \dfrac{1 - \dfrac{1}{2}}{1 - \dfrac{1}{2}} = 2*\left(1 - \dfrac{1}{2}\right) .

The partial product then becomes

2 ( 1 1 2 ) ( 1 + 1 2 ) ( 1 + 1 4 ) ( 1 + 1 16 ) . . . ( 1 + 1 2 2 N ) = 2*\left(1 - \dfrac{1}{2}\right)\left(1 + \dfrac{1}{2}\right)\left(1 + \dfrac{1}{4}\right)\left(1 + \dfrac{1}{16}\right) ... \left(1 + \dfrac{1}{2^{2^{N}}}\right) =

2 ( 1 1 4 ) ( 1 + 1 4 ) ( 1 + 1 16 ) . . . . ( 1 + 1 2 2 N ) = 2*\left(1 - \dfrac{1}{4}\right)\left(1 + \dfrac{1}{4}\right)\left(1 + \dfrac{1}{16}\right) .... \left(1 + \dfrac{1}{2^{2^{N}}}\right) =

2 ( 1 1 16 ) ( 1 + 1 16 ) . . . . ( 1 + 1 2 2 N ) = 2 ( 1 1 256 ) . . . . ( 1 + 1 2 2 N ) 2*\left(1 - \dfrac{1}{16}\right)\left(1 + \dfrac{1}{16}\right) .... \left(1 + \dfrac{1}{2^{2^{N}}}\right) = 2*\left(1 - \dfrac{1}{256}\right) .... \left(1 + \dfrac{1}{2^{2^{N}}}\right) .

The "collapsing", or telescoping, of the partial product would continue until we're left with

2 ( 1 1 2 2 N ) ( 1 + 1 2 2 N ) = 2 ( 1 1 2 2 N + 1 ) 2*\left(1 - \dfrac{1}{2^{2^{N}}}\right)\left(1 + \dfrac{1}{2^{2^{N}}}\right) = 2*\left(1 - \dfrac{1}{2^{2^{N+1}}}\right) .

As N N \rightarrow \infty we have 1 2 2 N + 1 0 \dfrac{1}{2^{2^{N+1}}} \rightarrow 0 , leaving us with an infinite product of 2 \boxed{2} .

Nice solution

Aman Dubey - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...