Not Your Typical Trigonometric Values

Geometry Level 3

If L = sin 2 0 cos 2 0 L= \sin 20^\circ - \cos20^\circ , find the value of cos 4 0 \cos40^\circ in terms of L L .

L 2 L 2 L \sqrt{2-L^2} L 2 L 2 -L \sqrt{2-L^2} L L 2 2 L \sqrt{L^2-2} L L 2 2 -L \sqrt{L^2-2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Feb 28, 2016

sin 2 0 cos 2 0 = L \large \sin 20^\circ-\cos 20^\circ=L (Squaring and using sin 2 θ + cos 2 θ = 1 \color{#D61F06}{\sin^2 \theta+\cos^2 \theta=1} ) 2 sin 2 0 cos 2 0 = sin 4 0 = 1 L 2 \large \implies 2\sin 20^\circ\cos 20^\circ=\sin 40^\circ=1-L^2 ( 2 sin θ cos θ = sin 2 θ ) ~~~~~~~~~\left(\color{#D61F06}{2\sin \theta \cos\theta=\sin 2\theta}\right) cos 4 0 = 1 ( sin 4 0 ) 2 \large \therefore\cos 40^\circ=\sqrt{1-(\sin 40^\circ)^2} = 1 ( 1 L 2 ) 2 \large =\sqrt{1-(1-L^2)^2} U s e a 2 b 2 = ( a + b ) ( a b ) ~~~~~~~~\color{#D61F06}{Use ~a^2-b^2=(a+b)(a-b)} = ( L 2 ) ( 2 L 2 ) \large=\sqrt{(L^2)(2-L^2)} = L 2 L 2 \Large =\color{#0C6AC7}{-L\sqrt{2-L^2}}


N o t e : Since sin 20°<cos 20°, hence L<0 \color{#20A900}{Note:-}\text{Since sin 20°<cos 20°, hence L<0} cos 4 0 > 0 cos 4 0 = L 2 L 2 \cos 40^\circ >0 \implies \cos 40^\circ= -L\sqrt{2-L^2} (And not L 2 L 2 ) ~~~~~~~~~~~~~~\text { (And not } L\sqrt{2-L^2})

Nice solution. Thanks!

Sandeep Bhardwaj - 5 years, 3 months ago

Solved it the same way, but I missed the fact that L<0. XD

Thomas James Bautista - 5 years, 3 months ago
Gino Varkey
Jul 25, 2018

Sin(20)-cos(20)=L

(Sin(20)-cos(20))^2+(sin(20)+cos(20))^2=2 Therefore

Sin(20)+cos(20)=√(2-L^2)

Cos(40)=cos^2(20)-sin^2(20)

=-(sin(20)-cos(20))×(cos(20)+sin(20))

= -L×√(2-L^2)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...