Big number

9 9 9 9 Ninety nine 9’s \Large \underbrace{9^{9^{9^{\cdot^{\cdot^{\cdot{9}}}}}}}_{\text{Ninety nine 9's}}

What is the last digit of the above number?

3 9 1 4 5 8 7 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 14, 2016

9 9 9 . . . 9 ( 10 1 ) 9 9 . . . 9 (mod 10) ( 1 ) 9 9 . . . 9 (mod 10) Since the power is odd. 1 (mod 10) 9 (mod 10) \begin{aligned} 9^{9^{9^{.^{.^{.^9}}}}} & \equiv (10-1)^{9^{9^{.^{.^{.^9}}}}} \text{ (mod 10)} \\ & \equiv (-1)^\color{#3D99F6}{{9^{9^{.^{.^{.^9}}}}}} \text{ (mod 10)} & \small \color{#3D99F6}{\text{Since the power is odd.}} \\ & \equiv -1 \text{ (mod 10)} \\ & \equiv \boxed{9} \text{ (mod 10)} \end{aligned}

Shithil Islam
Aug 13, 2016

9^2=81,9^3=729. That's means if 9's power is even then it's last disit is 1 and if it's power is odd then the last disit is 9. So the answer is 9.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...