Not as easy as it seems

Calculus Level 3

Calculate the following definite integral: 0 4 t 4 1 + t 4 d t \large \int_0^4\frac{t^4}{1+t^4}dt Hint: Use partial fractions.

Caution: This is a long and tedious integration. Be patient and good luck!


The answer is 2.8945.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 18, 2018

I = 0 4 t 4 1 + t 4 d t = 0 4 ( 1 1 1 + t 4 ) d t = 4 0 4 1 1 + t 4 d t = 4 0 4 1 ( t 2 2 t + 1 ) ( t 2 + 2 t + 1 ) d t = 4 1 2 2 0 4 ( t + 2 t 2 + 2 t + 1 t 2 t 2 2 t + 1 ) d t = 4 1 4 2 0 4 ( 2 t + 2 + 2 t 2 + 2 t + 1 2 t 2 2 t 2 2 t + 1 ) d t = 4 1 4 2 0 4 ( 2 t + 2 t 2 + 2 t + 1 2 t 2 t 2 2 t + 1 ) d t 1 4 0 4 ( 1 t 2 + 2 t + 1 + 1 t 2 2 t + 1 ) d t = 4 1 4 2 ln ( t 2 + 2 t + 1 t 2 2 t + 1 ) 0 4 1 2 0 4 ( 1 ( 2 t + 1 ) 2 + 1 + 1 ( 2 t 1 ) 2 + 1 ) d t = 4 1 4 2 ln ( 17 + 4 2 17 4 2 ) 1 2 2 ( tan 1 ( 2 t + 1 ) + tan 1 ( 2 t 1 ) ) 0 4 = 4 1 4 2 ln ( 17 + 4 2 17 4 2 ) 1 2 2 ( tan 1 ( 4 2 + 1 ) + tan 1 ( 4 2 1 ) ) 2.895 \begin{aligned} I & = \int_0^4 \frac {t^4}{1+t^4}dt \\ & = \int_0^4 \left(1 - \frac 1{1+t^4} \right) dt \\ & = 4 - \int_0^4 \frac 1{1+t^4} dt \\ & = 4 - \int_0^4 \frac 1{(t^2-\sqrt 2t +1)(t^2+\sqrt 2t+1)}dt \\ & = 4 - \frac 1{2\sqrt 2} \int_0^4 \left(\frac {t+\sqrt 2}{t^2+\sqrt 2t +1} - \frac {t-\sqrt 2}{t^2-\sqrt 2t +1} \right) dt \\ & = 4 - \frac 1{4\sqrt 2} \int_0^4 \left(\frac {2t+\sqrt 2+\sqrt 2}{t^2+\sqrt 2t +1} - \frac {2t-\sqrt 2-\sqrt 2}{t^2-\sqrt 2t +1} \right) dt \\ & = 4 - \frac 1{4\sqrt 2} \int_0^4 \left(\frac {2t+\sqrt 2}{t^2+\sqrt 2t +1} - \frac {2t-\sqrt 2}{t^2-\sqrt 2t +1} \right) dt - \frac 14 \int_0^4 \left(\frac 1{t^2+\sqrt 2t +1} + \frac 1{t^2-\sqrt 2t +1} \right) dt \\ & = 4 - \frac 1{4\sqrt 2} \ln \left(\frac {t^2+\sqrt 2t+1}{t^2-\sqrt 2t + 1}\right)\bigg|_0^4 - \frac 12 \int_0^4 \left(\frac 1{(\sqrt 2t +1)^2+1} +\frac 1{(\sqrt 2t-1)^2+1} \right) dt \\ & = 4 - \frac 1{4\sqrt 2} \ln \left(\frac {17+4\sqrt 2}{17-4\sqrt 2} \right) - \frac 1{2\sqrt 2} \left(\tan^{-1} (\sqrt 2t+1) + \tan^{-1} (\sqrt2t-1)\right) \bigg|_0^4 \\ & = 4 - \frac 1{4\sqrt 2} \ln \left(\frac {17+4\sqrt 2}{17-4\sqrt 2} \right) - \frac 1{2\sqrt 2} \left(\tan^{-1} (4\sqrt 2+1) + \tan^{-1} (4\sqrt2-1) \right) \\ & \approx \boxed{2.895} \end{aligned}

Thanks for taking your time to write such a detailed solution, sir.

Muhammad Arifur Rahman - 2 years, 5 months ago

Log in to reply

You are welcome.

Chew-Seong Cheong - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...