Calculate the following definite integral: Hint: Use partial fractions.
Caution: This is a long and tedious integration. Be patient and good luck!
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I = ∫ 0 4 1 + t 4 t 4 d t = ∫ 0 4 ( 1 − 1 + t 4 1 ) d t = 4 − ∫ 0 4 1 + t 4 1 d t = 4 − ∫ 0 4 ( t 2 − 2 t + 1 ) ( t 2 + 2 t + 1 ) 1 d t = 4 − 2 2 1 ∫ 0 4 ( t 2 + 2 t + 1 t + 2 − t 2 − 2 t + 1 t − 2 ) d t = 4 − 4 2 1 ∫ 0 4 ( t 2 + 2 t + 1 2 t + 2 + 2 − t 2 − 2 t + 1 2 t − 2 − 2 ) d t = 4 − 4 2 1 ∫ 0 4 ( t 2 + 2 t + 1 2 t + 2 − t 2 − 2 t + 1 2 t − 2 ) d t − 4 1 ∫ 0 4 ( t 2 + 2 t + 1 1 + t 2 − 2 t + 1 1 ) d t = 4 − 4 2 1 ln ( t 2 − 2 t + 1 t 2 + 2 t + 1 ) ∣ ∣ ∣ ∣ 0 4 − 2 1 ∫ 0 4 ( ( 2 t + 1 ) 2 + 1 1 + ( 2 t − 1 ) 2 + 1 1 ) d t = 4 − 4 2 1 ln ( 1 7 − 4 2 1 7 + 4 2 ) − 2 2 1 ( tan − 1 ( 2 t + 1 ) + tan − 1 ( 2 t − 1 ) ) ∣ ∣ ∣ ∣ 0 4 = 4 − 4 2 1 ln ( 1 7 − 4 2 1 7 + 4 2 ) − 2 2 1 ( tan − 1 ( 4 2 + 1 ) + tan − 1 ( 4 2 − 1 ) ) ≈ 2 . 8 9 5