Not everything get cancelled

Algebra Level 3

{ A = 1 + 2 + 3 + + 2018 1 3 + 2 3 + 3 3 + + 201 8 3 B = 1 2 + 2 2 + 3 2 + + 201 8 2 1 4 + 2 4 + 3 4 + + 201 8 4 \begin{cases} A=\dfrac{{\color{#3D99F6}1+2+3+\cdots +2018}}{{\color{#D61F06}1^3+2^3+3^3+\cdots+ 2018^3}} \\ B = \dfrac{{\color{#20A900}1^2+2^2+3^2+\cdots +2018^2}}{{\color{#E81990}1^4+2^4+3^4+\cdots +2018^4}}\end{cases}

Which is larger?

A > B A > B B > A B > A A = B A=B

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Sum of n, n², or n³

Note that

k = 1 n k = n ( n + 1 ) 2 k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 6 k = 1 n k 3 = ( n ( n + 1 ) 2 ) 2 k = 1 n k 4 = n ( n + 1 ) ( 2 n + 1 ) ( 3 n 2 + 3 n 1 30 \begin{aligned} \sum_{k=1}^n k & = \frac {n(n+1)}2 \\ \sum_{k=1}^n k^2 & = \frac {n(n+1)(2n+1)}6 \\ \sum_{k=1}^n k^3 & = \left(\frac {n(n+1)}2\right)^2 \\ \sum_{k=1}^n k^4 & = \frac {n(n+1)(2n+1)(3n^2+3n-1}{30} \end{aligned}

Therefore, { A = k = 1 n k k = 1 n k 3 = 2 n ( n + 1 ) B = k = 1 n k 2 k = 1 n k 4 = 5 3 n 2 + 3 n 1 \begin{cases} A = \dfrac {\sum_{k=1}^n k}{\sum_{k=1}^n k^3} = \dfrac 2{n(n+1)} \\ B = \dfrac {\sum_{k=1}^n k^2}{\sum_{k=1}^n k^4} = \dfrac 5{3n^2+3n-1} \end{cases}

A B = 2 ( 3 n 2 + 3 n 1 ) 5 ( n 2 + n ) = 6 ( n 2 + n 1 3 ) 5 ( n 2 + n ) = 6 5 2 5 ( n 2 + n ) > 1 \implies \dfrac AB = \dfrac {2(3n^2+3n-1)}{5(n^2+n)} = \dfrac {6\left(n^2+n-\frac 13\right)}{5(n^2+n)} = \dfrac 65 - \dfrac 2{5(n^2+n)} > 1 for n > 1 n > 1 , therefore A > B \boxed{A>B} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...