Hint: 11 + 3 < 2017 11+3<2017

Algebra Level 5

Determine the greatest value of 11 x y + 3 x z + 2017 y z 11xy + 3xz + 2017yz , where x , y , z x, y, z are non-negative integers satisfying x + y + z = 1000 x + y + z = 1000 .


The answer is 504250000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Shourya Pandey
May 19, 2017

We use a method called Mixing Variables.

Let f ( x , y , z ) = 11 x y + 3 x z + 2017 y z f(x,y,z)= 11xy+3xz+2017yz . We have

f ( 0 , x 2 + y , x 2 + z ) = 2017 ( x 2 + y ) ( x 2 + z ) f(0,\frac{x}{2}+y,\frac{x}{2}+z)= 2017(\frac{x}{2}+y)(\frac{x}{2}+z)

2017 x y 2 + 2017 x z 2 + 2017 y z f ( x , y , z ) \geq \frac{2017xy}{2} + \frac{2017xz}{2} + 2017yz \geq f(x,y,z) .

What this means is that it is always best to take x = 0 x=0 for maximising f ( x , y , z ) f(x,y,z) .

Also, f ( 0 , x 2 + y , x 2 + z ) = 2017 ( x 2 + y ) ( x 2 + z ) f(0,\frac{x}{2}+y,\frac{x}{2}+z)= 2017(\frac{x}{2}+y)(\frac{x}{2}+z)

2017 ( ( x 2 + y ) + ( x 2 + z ) 2 ) 2 = 2017 ( 1000 2 ) 2 \leq 2017(\frac{(\frac{x}{2}+y)+ (\frac{x}{2}+z)}{2})^{2} = 2017(\frac{1000}{2})^{2}

= 2017 × ( 500 ) 2 =2017\times (500)^2

Therefore f ( x , y , z ) 504250000 f(x,y,z) \leq \boxed{504250000} .

Equality holds iff x = 0 , y = z = 500 x=0,y=z=500 .

Good solution!

Steven Jim - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...