Not functions again

Algebra Level 4

Let |f(x)-f(y)|<= x y 3 |x-y|^{3} for all x,y belongs to R

Then the value of f'(x) is

Details and Assumptions

|.| denotes absolute value or mod function and R is the set of real no.

1 0 Not possible \infty -1 Can't be determined

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Replace x x + h x \to x + h and y x y \to x

f ( x + h ) f ( x ) ( x + h x ) 3 f ( x + h ) f ( x ) h 3 \Rightarrow |f(x+h) - f(x)| \leq (x + h - x)^{3} \Rightarrow |f(x+h) -f(x)| \leq h^{3}

h 3 f ( x + h ) f ( x ) h 3 \Rightarrow -h^{3} \leq f(x+h) - f(x) \leq h^{3}

h 2 f ( x + h ) f ( x ) h h 2 \Rightarrow -h^{2} \leq \dfrac{f(x+h) - f(x)}{h} \leq h^{2}

lim h 0 h 2 lim h 0 f ( x + h ) f ( x ) h lim h 0 h 2 \Rightarrow \displaystyle \lim_{h\to 0} -h^{2} \leq \lim_{h \to 0} \dfrac{f(x+h) -f(x)}{h} \leq \lim_{h\to 0} h^{2}

0 f ( x ) 0 f ( x ) = 0 \Rightarrow 0 \leq f'(x) \leq 0 \Rightarrow f'(x) = 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...