Not Geometric, Not Arithmetic...

Algebra Level 4

If the infinite series S = n = 0 2 n + 1 2 2 n + 1 { S }_{ \infty } = \sum _{ n=0 }^{ \infty }{ \frac { 2n+1 }{ { 2 }^{ 2n+1 } } } can be represented as A B \frac { A }{ B } , where A A and B B are positive coprime integers, then evaluate A + B A + B .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Dominick Hing
Oct 6, 2014

When writing it out, we can see that S = 1 2 + 3 8 + 5 32 . . . { S }_{ \infty } = \frac { 1 }{ 2 } +\frac { 3 }{ 8 } +\frac { 5 }{ 32 } ...

From this 4 S = 4 2 + 12 8 + 20 32 . . . = 2 + ( 3 2 + 5 8 . . . ) 4{ S }_{ \infty }=\frac { 4 }{ 2 } +\frac { 12 }{ 8 } +\frac { 20 }{ 32 } ...=2+(\frac { 3 }{ 2 } +\frac { 5 }{ 8 } ...) .

We multiply S { S }_{ \infty } by 4 to "shift" the numbers so that we can subtract the two equations easily.

S = 1 2 + 3 8 + 5 32 . . . { S }_{ \infty } = \frac { 1 }{ 2 } +\frac { 3 }{ 8 } +\frac { 5 }{ 32 } ...

4 S = 2 + ( 3 2 + 5 8 . . . ) 4{ S }_{ \infty }=2+(\frac { 3 }{ 2 } +\frac { 5 }{ 8 } ...)

We subtract the numbers diagonally with common denominators... To avoid negative signs I will subtract the first from the second...

3 S = ( 2 ) + ( 3 2 1 2 ) + ( 5 8 3 8 ) . . . = 3 S = 2 1 + 2 2 + 2 8 . . . 3{ S }_{ \infty }=\left( 2 \right) +\left( \frac { 3 }{ 2 } -\frac { 1 }{ 2 } \right) +\left( \frac { 5 }{ 8 } -\frac { 3 }{ 8 } \right) ...=3{ S }_{ \infty }=\frac { 2 }{ 1 } +\frac { 2 }{ 2 } +\frac { 2 }{ 8 } ...

This is clearly a geometric infinite series plus the constant 2 at the beginning...

3 S = ( 2 ) + ( 3 2 1 2 ) + ( 5 8 3 8 ) . . . = 3 S = ( 2 1 ) + ( 2 2 + 2 8 . . . ) = 2 + 1 1 1 4 = 2 + 1 3 4 = 6 3 + 4 3 = 10 3 3{ S }_{ \infty }=\left( 2 \right) +\left( \frac { 3 }{ 2 } -\frac { 1 }{ 2 } \right) +\left( \frac { 5 }{ 8 } -\frac { 3 }{ 8 } \right) ...=3{ S }_{ \infty }=(\frac { 2 }{ 1 } )+(\frac { 2 }{ 2 } +\frac { 2 }{ 8 } ...)=2+\frac { 1 }{ 1-\frac { 1 }{ 4 } } =2+\frac { 1 }{ \frac { 3 }{ 4 } } =\frac { 6 }{ 3 } +\frac { 4 }{ 3 } =\frac { 10 }{ 3 }

and thus 3 S = 10 3 3{ S }_{ \infty }=\frac { 10 }{ 3 }

S = 10 9 { S }_{ \infty }=\frac { 10 }{ 9 }

10 + 9 = 19 10 + 9 = 19

Q.E.D.

That's how I did this problem . Awesome job! :D

Finn Hulse - 6 years, 8 months ago

same here .. :D

Ramesh Goenka - 6 years, 8 months ago

it was an arithmetico-geometric series ....right

Kaustubh Bhargao - 6 years, 8 months ago

Log in to reply

Yes it would be

Dominick Hing - 6 years, 8 months ago

I love this way.

Panya Chunnanonda - 6 years, 7 months ago

Another approach is as follows. The sum can be rewritten as

S = n = 0 ( n ( 1 4 ) n ) + ( 1 2 ) n = 0 ( 1 4 ) n S_{\infty} = \sum_{n=0}^\infty (n*(\frac{1}{4})^{n}) + (\frac{1}{2})*\sum_{n=0}^\infty (\frac{1}{4})^{n} .

Now note that for x < 1 |x| \lt 1 we have that

n = 0 x n = 1 1 x \sum_{n=0}^\infty x^{n} = \frac{1}{1 - x} .

If we differentiate both sides with respect to x x , (the LHS term by term), we find that

n = 0 n x n 1 = 1 ( 1 x ) 2 n = 0 n x n = x ( 1 x ) 2 \sum_{n=0}^\infty n*x^{n-1} = \frac{1}{(1 - x)^{2}} \Longrightarrow \sum_{n=0}^\infty n*x^{n} = \frac{x}{(1 - x)^{2}} .

With x = 1 4 x = \frac{1}{4} we then find that

S = 1 4 ( 1 1 4 ) 2 + ( 1 2 ) 1 1 1 4 = ( 1 4 ) ( 16 9 ) + ( 1 2 ) ( 4 3 ) = 4 9 + 2 3 = 10 9 S_{\infty} = \dfrac{\frac{1}{4}}{(1 - \frac{1}{4})^{2}} + (\frac{1}{2})*\dfrac{1}{1 - \frac{1}{4}} = (\frac{1}{4})(\frac{16}{9}) + (\frac{1}{2})(\frac{4}{3}) = \dfrac{4}{9} + \dfrac{2}{3} = \dfrac{10}{9} .

Thus A = 10 , B = 9 A = 10, B = 9 and A + B = 19 A + B = \boxed{19} .

very elegant solution! I was differentiating and I was using the infinite geometric progression sum formula. But I wasn't seeing in the combined generic terms.

Abhineet Sharma - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...