Not hard

Algebra Level 3

1 1 × 2 + 1 2 × 3 + 1 3 × 4 + . . . . . . + 1 99 × 100 = a b \frac{1}{1 \times 2} +\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+......+\frac{1}{99 \times 100}=\frac{a}{b} where a b \frac{a}{b} is in simplest fractional form. Find a + b a+b . After finding a + b a+b , express it in the form of n 100 x n100-x . What is n + x n+x ?

[Note: a , b , n , x Z + a,b,n,x\in\mathbb{Z^{+}} and 0 < n , x < 100 0<n,x<100 ]


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

1 1 × 2 + 1 2 × 3 + 1 3 × 4 + + 1 99 × 100 \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times 4}+\ldots+\frac{1}{99\times100} = 1 1 1 2 + 1 2 1 3 + 1 3 1 99 + 1 99 1 100 = \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\ldots-\frac{1}{99}+\frac{1}{99}-\frac{1}{100} = 1 1 + ( 1 2 1 2 ) + ( 1 3 1 3 ) + + ( 1 99 1 99 ) 1 100 = \frac{1}{1}+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\ldots+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100} = 1 1 100 = 99 100 = 1-\frac{1}{100}=\frac{99}{100}

Take 99 + 100 = 199 99+100=199

199 = 100 n x 199=100n-x 100 n > 199 \Rightarrow 100n>199 n = 2 \Rightarrow n=\boxed{2} 199 = 200 x x = 1 199=200-x \Rightarrow x=\boxed{1}

@Ritzy Ritvik Why is it in Number Theory ?

Venkata Karthik Bandaru - 5 years, 9 months ago

I found the sum of n terms. For eg.- for the first term we have 1/2 then 2/3 then 3/4 .......so on. So there was a pattern of n/n+1 . The no. of terms are 99. So the answer is 199.

Satyajit Ghosh - 5 years, 9 months ago
Ramiel To-ong
May 12, 2016

nice analysis. same as mine.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...