Not only AM-GM 3 (The Other AM-GM Part 5)

Algebra Level 4

Find the minimum value of the expression below, for real a , b , c , d , e > 0 a,b,c,d,e >0

b + c + d + e a + a + c + d + e b + a + b + d + e c + a + b + c + e d + a + b + c + d e \begin{aligned} \dfrac{b+c+d+e}{a} + \dfrac{a+c+d+e}{b} + \dfrac{a+b+d+e}{c} + \dfrac{a+b+c+e}{d} + \dfrac{a+b+c+d}{e} \end{aligned}

Bonus: For real x 1 , x 2 , x 3 , x 4 , , x n > 0 x_1 , x_2 , x_3 , x_4 , \cdots , x_n >0 , let x 1 + x 2 + x 3 + x 4 + + x n = S x_1 + x_2 + x_3 + x_4 + \cdots + x_n = S . Find the minimum value of S x 1 x 1 + S x 2 x 2 + S x 3 x 3 + + S x n x n \dfrac{S- x_1}{x_1} + \dfrac{S-x_2}{x_2} + \dfrac{S-x_3}{x_3} + \cdots + \dfrac{S-x_n}{x_n} in term of n n .

For more problem about maximum and minimum value, click here


Try another problem on my set Let's Practice


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 18, 2017

S = c y c b + c + d + e a = c y c s a a where s = a + b + c + d + e = c y c s a 5 By AM HM : c y c 1 a 25 s (see below) 25 5 20 \begin{aligned} S & = \sum_{cyc} \frac {b+c+d+e}a \\ & = \sum_{cyc} \frac {{\color{#3D99F6}s}-a}a & \small \color{#3D99F6} \text{where }s=a+b+c+d+e \\ & = {\color{#3D99F6}\sum_{cyc} \frac sa} - 5 & \small \color{#3D99F6} \text{By AM}\ge \text{HM}: \sum_{cyc} \frac 1a \ge \frac {25}s \text{ (see below)} \\ & \ge {\color{#3D99F6}25} - 5 \\ & \ge \boxed{20} \end{aligned}

Bonus: Similarly, in general k j n x k x j n 2 n \displaystyle \sum_{k \ne j}^n \frac {x_k}{x_j} \ge n^2 - n


AM-HM inequality

5 1 a + 1 b + 1 c + 1 d + 1 e a + b + c + d + e 5 1 a + 1 b + 1 c + 1 d + 1 e 25 a + b + c + d + e \small \begin{aligned} \frac 5{\frac 1a+\frac 1b+\frac 1c+\frac 1d+\frac 1e} & \le \frac {a+b+c+d+e}5 \\ \frac 1a+\frac 1b+\frac 1c+\frac 1d+\frac 1e & \le \frac {25}{a+b+c+d+e} \end{aligned}

Wow!! Simpler than mine!! I also did it by AM-HM, but I want to try it with a different way.. Thanks for the solution, sir!

Fidel Simanjuntak - 4 years, 1 month ago

Nice solution! I didn't think about using AM - HM though. Thanks!

Steven Jim - 4 years, 1 month ago
Fidel Simanjuntak
Apr 17, 2017

By Cauchy-Schwarz Inequality, we have

( ( 1 a ) 2 + ( 1 b ) 2 + ( 1 c ) 2 + ( 1 d ) 2 + ( 1 e ) 2 ) ( ( a ) 2 + ( b ) 2 + ( c ) 2 + ( d ) 2 + ( e ) 2 ) ( 1 a a + 1 b b + 1 c c + 1 d d + 1 e e ) 2 ( 1 a + 1 b + 1 c + 1 d + 1 e ) ( a + b + c + d + e ) 5 2 b + c + d + e a + a + c + d + e b + a + b + d + e c + a + b + c + e d + a + b + c + d e + 5 25 b + c + d + e a + a + c + d + e b + a + b + d + e c + a + b + c + e d + a + b + c + d e 20 \begin{aligned} \left( \left( \dfrac{1}{ \sqrt{a}} \right)^2 + \left( \dfrac{1}{ \sqrt{b}} \right)^2 + \left( \dfrac{1}{ \sqrt{c}} \right)^2 + \left( \dfrac{1}{ \sqrt{d}} \right)^2 + \left( \dfrac{1}{ \sqrt{e}} \right)^2 \right) \left( (\sqrt{a})^2 + (\sqrt{b})^2 + (\sqrt{c})^2 + (\sqrt{d})^2 + (\sqrt{e})^2 \right) & \geq \left( \dfrac{1}{\sqrt{a}} \cdot \sqrt{a} + \dfrac{1}{\sqrt{b}} \cdot \sqrt{b} + \dfrac{1}{\sqrt{c}} \cdot \sqrt{c} + \dfrac{1}{\sqrt{d}} \cdot \sqrt{d} + \dfrac{1}{\sqrt{e}} \cdot \sqrt{e} \right)^2 \\ \left( \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} + \dfrac{1}{d} + \dfrac{1}{e} \right) \left( a+b+c+d+e \right) & \geq 5^2 \\ \dfrac{b+c+d+e}{a} + \dfrac{a+c+d+e}{b} + \dfrac{a+b+d+e}{c} + \dfrac{a+b+c+e}{d} + \dfrac{a+b+c+d}{e} + 5 & \geq 25 \\ \dfrac{b+c+d+e}{a} + \dfrac{a+c+d+e}{b} + \dfrac{a+b+d+e}{c} + \dfrac{a+b+c+e}{d} + \dfrac{a+b+c+d}{e} & \geq 20 \end{aligned}

Hence, The answer is 20 \boxed{20}

Same as mine! Nice solution!

Steven Jim - 4 years, 1 month ago

Log in to reply

Thanks!! Glad to hear that

Fidel Simanjuntak - 4 years, 1 month ago
Steven Jim
Apr 18, 2017

My ways of solving this problem. Please check out if there are any mistakes! Thanks!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...