Not ordinary equations!

Geometry Level 5

{ a 2 + a b + b 2 = 9 b 2 + b c + c 2 = 52 c 2 + c a + a 2 = 49 \begin{cases} a^2+ab+b^2&=&9 \\ b^2+bc+c^2&=&52 \\ c^2+ca+a^2&=&49 \end{cases}

Let a a , b b and c c be real numbers satisfying the system of equations above.

Compute the integral value of 49 b 2 + 39 b c + 9 c 2 a 2 \dfrac{49b^2+39bc+9c^2}{a^2} .

Hint : See the topic of this question.


Source : HMMT


The answer is 52.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rewrite the equations as: a 2 + b 2 2 a b cos ( 12 0 ) = 3 2 . . . ( 1 ) b 2 + c 2 2 b c cos ( 12 0 ) = 52 2 . . . ( 2 ) c 2 + a 2 2 c a cos ( 12 0 ) = 7 2 . . . ( 3 ) \begin{aligned} a^2+b^2-2ab\cos(120^\circ)=3^2 \quad ... \quad &(1) \\ b^2+c^2-2bc\cos(120^\circ)=\sqrt{52}^2 \quad ... \quad &(2) \\ c^2+a^2-2ca\cos(120^\circ)=7^2 \quad ... \quad &(3) \end{aligned}

By law of cosines and the fact that the three angles add up to 36 0 360^\circ , we can construct the following triangle: By Heron's formula, the total area is [ A B C ] = 6 3 [ABC]=6\sqrt{3} . Now, considering the small triangles and adding their areas we also get [ A B C ] = ( a b + b c + c a ) sin ( 12 0 ) 2 [ABC]=(ab+bc+ca)\frac{\sin(120^\circ)}{2} , then:

a b + b c + c a = ± 24 . . . ( 4 ) ab+bc+ca=\pm 24 \quad ... \quad (4) (see why it can also be negative and how the triangle changes).

By adding ( 1 ) , ( 2 ) (1),(2) and ( 3 ) (3) we get 2 ( a 2 + b 2 + c 2 ) + a b + b c + c a = 110 2(a^2+b^2+c^2)+ab+bc+ca=110 , and use ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) (a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca) to get 2 ( a + b + c ) 2 3 ( a b + b c + c a ) = 110 2(a+b+c)^2-3(ab+bc+ca)=110 . Replace the value of ( 4 ) (4) to get:

a + b + c = ± 55 ± 36 . . . ( 5 ) a+b+c=\color{#3D99F6}{\pm}\sqrt{55\pm 36} \quad ... \quad (5)

Ssubtract ( 2 ) (2) from ( 1 ) (1) to get with ( 5 ) (5) :

( a + b + c ) ( a c ) = 43 c = a ± 43 55 ± 36 . . . ( 6 ) (a+b+c)(a-c)=-43 \implies c=a\color{#3D99F6}{\pm}\dfrac{43}{\sqrt{55\pm 36}} \quad ... \quad (6)

Similarly, subtract ( 3 ) (3) from ( 2 ) (2) :

( a + b + c ) ( b a ) = 3 b = a ± 3 55 ± 36 . . . ( 7 ) (a+b+c)(b-a)=3 \implies b=a\color{#3D99F6}{\pm}\dfrac{3}{\sqrt{55\pm 36}} \quad ... \quad (7)

Substitute ( 6 ) (6) and ( 7 ) (7) in ( 5 ) (5) :

3 a ± 46 55 ± 36 = ± 55 ± 36 a = ± ( 55 ± 36 ) 46 3 55 ± 36 3a\color{#3D99F6}{\pm}\dfrac{46}{\sqrt{55\pm 36}}=\color{#3D99F6}{\pm}\sqrt{55\pm 36} \implies a=\color{#3D99F6}{\pm}\dfrac{(55\pm 36)-46}{3\sqrt{55\pm 36}}

Find b b and c c :

b = ± ( 55 ± 36 ) 37 3 55 ± 36 b=\color{#3D99F6}{\pm}\dfrac{(55\pm 36)-37}{3\sqrt{55\pm 36}}

c = ± ( 55 ± 36 ) + 83 3 55 ± 36 c=\color{#3D99F6}{\pm}\dfrac{(55\pm 36)+83}{3\sqrt{55\pm 36}}

We get four solutions combining the ± \color{#3D99F6}{\pm} and the ± \pm signs: ( a , b , c ) = ( 15 91 , 18 91 , 58 91 ) (a,b,c)=\left(\frac{15}{\sqrt{91}},\frac{18}{\sqrt{91}},\frac{58}{\sqrt{91}}\right) , ( 15 91 , 18 91 , 58 91 ) \left(-\frac{15}{\sqrt{91}},-\frac{18}{\sqrt{91}},-\frac{58}{\sqrt{91}}\right) , ( 9 19 , 6 19 , 34 19 ) \left(-\frac{9}{\sqrt{19}},-\frac{6}{\sqrt{19}},\frac{34}{\sqrt{19}}\right) , ( 9 19 , 6 19 , 34 19 ) \left(\frac{9}{\sqrt{19}},\frac{6}{\sqrt{19}},-\frac{34}{\sqrt{19}}\right)

Only the last two pairs give us an integer value for the asked expression, so:

49 b 2 + 39 b c + 9 c 2 a 2 = 49 ( 6 ) 2 + 39 ( 6 ) ( 34 ) + 9 ( 34 ) 2 9 2 = 4212 81 = 52 \dfrac{49b^2+39bc+9c^2}{a^2}=\dfrac{49(6)^2+39(6)(-34)+9(-34)^2}{9^2}=\dfrac{4212}{81}=\boxed{52} .

woww, what a beautiful solution;)

Rajuh Pbbs - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...