Inequality #1

Algebra Level 5

Given that

1 x 1 4 x 2 + 4 x 3 1 x 4 < 1 30 \dfrac{1}{x-1}-\dfrac{4}{x-2}+\dfrac{4}{x-3}-\dfrac{1}{x-4}<\dfrac{1}{30}

and that x ( , x 1 ) ( x 2 , x 3 ) ( x 4 , x 5 ) ( x 6 , x 7 ) ( x 8 , ) x \in (-\infty,x_{1})\cup(x_{2},x_{3})\cup(x_{4},x_{5})\cup(x_{6},x_{7})\cup(x_{8},\infty) , where x 8 > x 7 > x 6 > x 5 > x 4 > x 3 > x 2 > x 1 x_8>x_7>x_6>x_5>x_4>x_3>x_2>x_1 , find k = 1 8 x k \displaystyle\sum_{k=1}^8 x_{k} .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Given inequality is :

1 x 1 4 x 2 + 4 x 3 1 x 4 < 1 30 \dfrac{1}{x-1}-\dfrac{4}{x-2}+\dfrac{4}{x-3}-\dfrac{1}{x-4}<\dfrac{1}{30}

4 ( x 2 ) ( x 3 ) 3 ( x 1 ) ( x 4 ) < 1 30 \dfrac{4}{(x-2)(x-3)}-\dfrac{3}{(x-1)(x-4)} <\dfrac{1}{30}

x 2 5 x 2 ( x 1 ) ( x 2 ) ( x 3 ) ( x 4 ) < 1 30 \dfrac{x^2-5x-2}{(x-1)(x-2)(x-3)(x-4)}<\dfrac{1}{30}

( x 2 5 x + 4 ) ( x 2 5 x + 6 ) 30 ( x 2 5 x 2 ) ( x 1 ) ( x 2 ) ( x 3 ) ( x 4 ) > 0 \dfrac{(x^2-5x+4)(x^2-5x+6)-30(x^2-5x-2)}{(x-1)(x-2)(x-3)(x-4)}>0

( x 2 5 x ) 2 20 ( x 2 5 x ) + 84 ( x 1 ) ( x 2 ) ( x 3 ) ( x 4 ) > 0 \dfrac{(x^2-5x)^2-20(x^2-5x)+84}{(x-1)(x-2)(x-3)(x-4)}>0

( x 2 5 x 14 ) ( x 2 5 x 6 ) ( x 1 ) ( x 2 ) ( x 3 ) ( x 4 ) > 0 \dfrac{(x^2-5x-14)(x^2-5x-6)}{(x-1)(x-2)(x-3)(x-4)}>0

( x + 1 ) ( x + 2 ) ( x 7 ) ( x 6 ) ( x 1 ) ( x 2 ) ( x 3 ) ( x 4 ) > 0 \dfrac{(x+1)(x+2)(x-7)(x-6)}{(x-1)(x-2)(x-3)(x-4)}>0

Hence ,

x ( , 2 ) ( 1 , 1 ) ( 2 , 3 ) ( 4 , 6 ) ( 7 , ) x \in (-\infty,-2)\cup(-1,1)\cup(2,3)\cup(4,6)\cup(7,\infty)

There should be x 1 x_1 to x 8 x_8 . You have repeated x 3 x_3 in the question.

Chew-Seong Cheong - 3 years, 1 month ago

Log in to reply

Thanks! I have edited the problem.

A Former Brilliant Member - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...