Maybe self-destructive

Calculus Level 5

( x = 0 ( 2 x ) ! ( 5 x + 6 x ) x ! 2 3 0 x ) 2 \large \left (\sum_{x=0}^\infty \dfrac{ (2x)! (5^x + 6^x) }{x!^2 \cdot 30^x } \right )^2

If the value of the expression above is in the form of a + b a + \sqrt b , where a a and b b are positive integers, find a + b a+b .


The answer is 68.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joel Yip
Feb 14, 2016

n = 0 ( 2 n ) ! ( 5 x + 6 x ) n ! 2 30 n = n = 0 ( 2 n n ) ( 1 5 n + 1 6 n ) \sum _{ n=0 }^{ \infty }{ \frac { \left( 2n \right) !\left( { 5 }^{ x }+6^{ x } \right) }{ { n! }^{ 2 }{ 30 }^{ n } } =\sum _{ n=0 }^{ \infty }{ \left( \begin{matrix} 2n \\ n \end{matrix} \right) \left( \frac { 1 }{ { 5 }^{ n } } +\frac { 1 }{ { 6 }^{ n } } \right) } } ,

so, n = 0 ( 2 n n ) ( 1 5 n + 1 6 n ) = n = 0 ( 2 n n ) 5 n + n = 0 ( 2 n n ) 6 n = 1 1 4 5 + 1 1 4 6 = 1 1 5 + 1 1 3 = 5 + 3 { \sum _{ n=0 }^{ \infty }{ \left( \begin{matrix} 2n \\ n \end{matrix} \right) \left( \frac { 1 }{ { 5 }^{ n } } +\frac { 1 }{ { 6 }^{ n } } \right) } =\sum _{ n=0 }^{ \infty }{ \frac { \left( \begin{matrix} 2n \\ n \end{matrix} \right) }{ { 5 }^{ n } } } }+\sum _{ n=0 }^{ \infty }{ \frac { \left( \begin{matrix} 2n \\ n \end{matrix} \right) }{ 6^{ n } } } \\ =\frac { 1 }{ \sqrt { 1-\frac { 4 }{ 5 } } } +\frac { 1 }{ \sqrt { 1-\frac { 4 }{ 6 } } } \\ =\frac { 1 }{ \sqrt { \frac { 1 }{ 5 } } } +\frac { 1 }{ \sqrt { \frac { 1 }{ 3 } } } \\ =\sqrt { 5 } +\sqrt { 3 }

( 5 + 3 ) 2 = 8 + 2 15 = 8 + 60 { \left( \sqrt { 5 } +\sqrt { 3 } \right) }^{ 2 }\\ =8+2\sqrt { 15 } \\ =8+\sqrt { 60 }

thus the answer is 68

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...