Not simply Telescopic

Algebra Level 4

{ A = 1 1 × 2 + 1 3 × 4 + 1 5 × 6 + + 1 99 × 100 B = 1 51 × 100 + 1 52 × 99 + 1 53 × 98 + + 1 100 × 51 \begin{cases} A = \dfrac{1}{1\times 2 } + \dfrac{1}{3 \times 4} + \dfrac 1{5 \times 6} + \cdots + \dfrac{1}{99 \times 100} \\ B= \dfrac{1}{51 \times 100} + \dfrac{1}{52 \times 99} + \dfrac 1{53 \times 98} + \cdots + \dfrac{1}{100 \times 51} \end{cases}

Given the above and that A B = m n \dfrac{A}{B} = \dfrac{m}{n} , where m m and n n are coprime positive integers. Find m + n m+n .


The answer is 153.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 15, 2017

A = 1 1 × 2 + 1 3 × 4 + 1 5 × 6 + + 1 99 × 100 = 2 1 1 × 2 + 4 3 3 × 4 + 6 5 5 × 6 + + 100 99 99 × 100 = 1 1 1 2 + 1 3 1 4 + 1 5 1 6 + + 1 99 1 100 = 1 1 + 1 2 + 1 3 + + 1 100 2 ( 1 2 + 1 4 + 1 6 + + 1 100 ) = H 100 2 2 ( 1 1 + 1 2 + 1 3 + + 1 50 ) where H n is the n th harmonic number. = H 100 H 50 \begin{aligned} A & = \frac 1{1\times 2} + \frac 1{3\times 4} + \frac 1{5\times 6} + \cdots + \frac 1{99\times 100} \\ & = {\color{#3D99F6}\frac {2-1}{1\times 2}} + {\color{#D61F06}\frac {4-3}{3\times 4}} + {\color{#3D99F6}\frac {6-5}{5\times 6}} + \cdots + {\color{#D61F06}\frac {100-99}{99\times 100}} \\ & = {\color{#3D99F6}\frac 11 - \frac 12} + {\color{#D61F06}\frac 13 - \frac 14} + {\color{#3D99F6}\frac 15 - \frac 16} + \cdots + {\color{#D61F06}\frac 1{99} - \frac 1{100}} \\ & = {\color{#3D99F6}\frac 11 + \frac 12 + \frac 13 + \cdots + \frac 1{100}} - 2 \left(\frac 12 + \frac 14 + \frac 16 + \cdots + \frac 1{100} \right) \\ & = {\color{#3D99F6}H_{100}} - \frac 22 \left(\frac 11 + \frac 12 + \frac 13 + \cdots + \frac 1{50} \right) & \small \color{#3D99F6} \text{where }H_n \text{ is the }n \text{th harmonic number.} \\ & = H_{100} - H_{50} \end{aligned}

B = 1 51 × 100 + 1 52 × 99 + 1 53 × 98 + + 1 100 × 51 = 2 ( 1 51 × 100 + 1 52 × 99 + 1 53 × 98 + + 1 75 × 76 ) = 2 151 ( 51 + 100 51 × 100 + 52 + 99 52 × 99 + 53 + 98 53 × 98 + + 75 + 76 75 × 76 ) = 2 151 ( 1 100 + 1 51 + 1 99 + 1 52 + 1 98 + 1 53 + + 1 76 + 1 75 ) = 2 151 ( H 100 H 50 ) \begin{aligned} B & = \frac 1{51\times 100} + \frac 1{52\times 99} + \frac 1{53\times 98} + \cdots + \frac 1{100\times 51} \\ & = 2\left(\frac 1{51\times 100} + \frac 1{52\times 99} + \frac 1{53\times 98} + \cdots + \frac 1{75\times 76}\right) \\ & = \frac 2{151} \left(\frac {51+100}{51\times 100} + \frac {52+99}{52\times 99} + \frac {53+98}{53\times 98} + \cdots + \frac {75+76}{75\times 76}\right) \\ & = \frac 2{151} \left(\frac 1{100} + \frac 1{51} + \frac 1{99} + \frac 1{52} + \frac 1{98} + \frac 1{53} + \cdots + \frac 1{76} + \frac 1{75} \right) \\ & = \frac 2{151} \left(H_{100}-H_{50} \right) \end{aligned}

A B = 151 2 \implies \dfrac AB = \dfrac {151}2 , m + n = 151 + 2 = 153 \implies m+n = 151+2 = \boxed{153} .

Exactly , this is the perfect solution sir !

Rakshit Joshi - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...