Not so easy

Algebra Level 3

a b + c + b a + c + c a + b \dfrac a{b+c} + \dfrac b{a+c} + \dfrac c{a+b}

If a , b a,b and c c are positive real numbers, find the minimum value of the expression above. If this value can be expressed as m n \dfrac mn , where m m and n n are coprime positive integers, submit m + n m+n as your answer.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Swapnil Das
Feb 24, 2016

By Titu's Lemma,

a b + c + b c + a + c a + b = a 2 a b + a c + b 2 b c + b a + c 2 c a + c b ( a + b + c ) 2 2 ( a b + b c + c a ) . \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b} = \dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ba}+\dfrac{c^2}{ca+cb}\ge \dfrac{(a+b+c)^2}{2(ab+bc+ca)}.

Next, we prove ( a + b + c ) 2 2 ( a b + b c + c a ) 3 2 or ( a + b + c ) 2 3 ( a b + b c + c a ) , \begin{array}{c}&\dfrac{(a+b+c)^2}{2(ab+bc+ca)}\ge \dfrac{3}{2} &\text{ or } &(a+b+c)^2\ge 3(ab+bc+ca), \end{array} which is true after full expansion and the use of the inequality a 2 + b 2 + c 2 a b + b c + c a a^2+b^2+c^2\ge ab+bc+ca .

The famous Nesbitt's!

Anik Mandal - 5 years, 3 months ago

Log in to reply

Yeah,you're right!

Swapnil Das - 5 years, 3 months ago

L e t X = a b + c + b a + c + c a + b Let X = \dfrac a{b+c} + \dfrac b{a+c} + \dfrac c{a+b}

X + 3 = ( a + b + c ) ( 1 b + c + 1 a + c + 1 a + b ) X + 3 = (a + b + c)( \dfrac 1{b+c} + \dfrac 1{a+c} + \dfrac 1{a+b} )

Note that :

( a + b ) + ( b + c ) + ( c + a ) 3 3 1 a + b + 1 b + c + 1 c + a [ A M H M ] \dfrac {(a + b) + (b + c) + (c + a)}{3} \ge \dfrac {3}{\dfrac {1}{a + b} + \dfrac{1}{b + c} + \dfrac{1}{c + a}} [AM \ge HM]

1 a + b + 1 b + c + 1 c + a 9 2 ( a + b + c ) \dfrac {1}{a + b} + \dfrac{1}{b + c} + \dfrac{1}{c + a} \ge \dfrac{9}{2(a + b + c)}

X + 3 ( a + b + c ) 9 2 ( a + b + c ) X + 3 \ge (a + b + c)\dfrac{9}{2(a + b + c)}

X 9 2 3 X \ge \dfrac{9}{2} - 3

a b + c + b a + c + c a + b 3 2 \dfrac a{b+c} + \dfrac b{a+c} + \dfrac c{a+b} \ge \dfrac{3}{2}

Hence 3 + 2 = 5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...