Not-so-hard logarithm equation

Algebra Level 1

log 2 [ log 11 ( log 5 x ) ] = 1 \large \log _{ 2 }{ [\log _{ 11 }{ (\log _{ 5 }{ x)] } } } =\quad -1

Solve this equation for "x"

3 e { 3 }^{ \sqrt { e } } 1 1 x 2 { 1 }^{ \sqrt { 1-{ x }^{ 2 } } } 7 30 { 7 }^{ \sqrt { 30 } } 5 11 { 5 }^{ \sqrt { 11 } }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Natan Mendes
Oct 18, 2015

You can easily solve this using the definition of logarithm that is:

l o g a b = c \large log _{ a }{ b } =\quad c

Then:

a c = b \large { a }^{ c }=\quad b

Using this at the problem this happens:

l o g 11 ( log 5 x ) = 2 1 \large log _{ 11 }{ (\log _{ 5 }{ x)\quad = } { 2 }^{ -1 } }

2 1 = 1 2 \large { 2 }^{ -1\quad }=\quad \frac { 1 }{ 2 }

Then:

l o g 5 x = 11 1 2 \large log _{ 5 }{ x\quad =\quad } { 11 }^{ \frac { 1 }{ 2 } }

11 1 2 = 11 \large { 11 }^{ \frac { 1 }{ 2 } }=\quad \sqrt { 11 }

Implies that:

l o g 5 x = 11 \large log _{ 5 }{ x } =\quad \sqrt { 11 }

And, to finish:

x = 5 11 \large x\quad = \quad { 5 }^{ \sqrt { 11 } }

Thanks !

Moderator note:

Simple standard approach.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...