Not so lengthy

Algebra Level 4

The infinite sum r = 0 a ( y 2 4 y + 5 ) r 1 \displaystyle \sum_{r=0} ^{\infty} \frac {a}{(y^2-4y+5)^{r-1}} , where y = x 2 6 x + 11 y=x^2-6x+11 , has a finite real value. What is the value which x x cannot be equal to?


The answer is 3.0000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
May 15, 2016

Let y 2 4 y + 5 = k y^2-4y+5=\color{#20A900}{k} . Now observe that The Discriminant of the quadratic ( k \color{#20A900}{k} ) is < 0 <0 and the coefficient of y 2 y^2 which is 1 > 0 1 >0 , which means the quadratic equation is always positive for y R \forall y \in R .Now , we calculate the Infinite Sum ,

a r = 0 1 k r 1 a × k 1 1 k a k 2 k 1 \large \displaystyle a\sum_{r=0}^{\infty}\dfrac1{\color{#20A900}k^{r-1}} \implies a\times \dfrac{\color{#20A900}k}{1-\dfrac1{\color{#20A900}k}} \implies \dfrac{a\color{#20A900}k^2}{\color{#20A900}k-1}

For the Infinite Sum to be meaningful, -1<\dfrac{1}{\color{#20A900}k}<1 \implies -\color{#20A900}k<1<\color{#20A900}k \implies 0<\color{#20A900}k-1 \text { & } 0<\color{#20A900}k+1

y 2 4 y + 5 1 > 0 y 2 4 y + 4 > 0 ( y 2 ) 2 > 0 y 2 Which Means x 2 6 x + 11 2 x 2 6 x + 9 0 x 3 \implies y^2-4y+5-1>0 \\ y^2-4y+4>0 \implies (y-2)^2>0 \\ \implies y\neq 2 \\ \text{Which Means } x^2-6x+11\neq 2 \\ x^2-6x+9\neq 0 \\ \implies \color{#3D99F6}{\boxed{x\neq 3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...