Evaluate: 0 ∫ ∞ ( 2 + f ( x ) ) ( 1 − f ( x ) ) x 2 d x where, f ( x ) = x sin x .
The value of the integral can be expressed as c a π b .
Given a and c are coprime, submit the value of a + b + c .
Details and Assumptions:
Following integrals may be helpful:
0 ∫ ∞ ( f ( x ) ) 2 d x = 2 π
0 ∫ ∞ ( f ( x ) ) 3 d x = 8 3 π
0 ∫ ∞ ( f ( x ) ) 4 d x = 3 π
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Brilliant solution!!! I evaluated the integral using a method given by @Haroun Meghaichi in a similar problem by @Pranav Arora . ⌣ ¨
Nicely done! Did you use a similar method to evaluate the problem I posted? If yes, I'd like to see it. :)
that was a beautiful solution!!
Periodic function!! that's the key point to solve this problem. Nice solution!!!
hello guys!
I need your help finding out what is wrong in my solution, I checked it several times:
our integral can be written as :(A)
∫ 0 ∞ ( x 2 2 ) d x − ∫ 0 ∞ ( x 3 sin x ) d x − ∫ 0 ∞ ( x 4 sin 2 x ) d x
1) the first integral diverges to ∞ .
2)solving the second integral, we use the substitution x = 3 u :
∫ 0 ∞ ( x 3 sin x ) d x = ∫ 0 ∞ ( 2 7 u 3 3 sin u − 4 sin 3 u ) 3 d u
rearranging, we get:
3 2 ∫ 0 ∞ ( x 3 sin x ) d x = − 9 4 ∫ 0 ∞ ( ( f ( x ) ) 3 ) d x
hence: ∫ 0 ∞ ( x 3 sin x ) d x = − 4 π
3) solving the third integral, we use the substitution x = 2 u :
∫ 0 ∞ ( x 4 sin 2 x ) d x = ∫ 0 ∞ ( 1 6 u 4 4 sin 2 u cos 2 u ) 2 d u = ∫ 0 ∞ ( 2 u 4 ( sin 2 u ) ( 1 − sin 2 u ) ) d u
rearranging, we get:
2 1 ∫ 0 ∞ ( x 4 sin 2 x ) d x = − 2 1 ∫ 0 ∞ ( ( f ( x ) ) 4 ) d x
hence, ∫ 0 ∞ ( x 4 sin 2 x ) d x = − 3 π
therefore, replacing our 3 values in the expression (A) , we conclude that our integral diverges!!!
Log in to reply
None of the three integral converges seperately.
Log in to reply
But the calculation of their values reveals convergence, could you elaborate more please? tell me when we can split the integral, when we can't. Thanks!
Problem Loading...
Note Loading...
Set Loading...
Let the required integral be I . Substituting f ( x ) = x sin x , in the integral, we obtain, I = 0 ∫ ∞ x 4 ( 2 x + sin x ) ( x − sin x ) d x ⇒ I = 0 ∫ ∞ x 4 2 x 2 − x sin x − sin 2 x d x ⇒ I = 0 ∫ ∞ x 4 x 2 − x sin x + x 2 − sin 2 x d x ⇒ I = 0 ∫ ∞ x 3 x − sin x d x + 0 ∫ ∞ x 4 x 2 − sin 2 x d x ⇒ I = A + B
where, A = 0 ∫ ∞ x 3 x − sin x d x and B = 0 ∫ ∞ x 4 x 2 − sin 2 x d x .
I will evaluate these integrals not by any theorem but by a nice substitution. For A : x → 3 y and for B : x → 2 z .
Thus, now we have,
A = 0 ∫ ∞ 2 7 y 3 3 y − sin 3 y ( 3 d y ) ⇒ 9 A = 0 ∫ ∞ y 3 3 y − 3 sin y + 4 sin 3 y d y ⇒ 9 A = 3 0 ∫ ∞ y 3 y − sin y d y + 4 0 ∫ ∞ ( y sin y ) 3 d y ⇒ 9 A = 3 A + 4 ( 8 3 π ) ⇒ A = 4 π
Also,
B = 0 ∫ ∞ 1 6 z 4 4 z 2 − sin 2 2 z ( 2 d z ) ⇒ B = 8 4 0 ∫ ∞ z 4 z 2 − sin 2 z cos 2 z d z ⇒ 2 B = 0 ∫ ∞ z 4 z 2 − sin 2 z + sin 4 z d z ⇒ 2 B = 0 ∫ ∞ z 4 z 2 − sin 2 z d z + 0 ∫ ∞ ( z sin z ) 4 d z ⇒ 2 B = B + 3 π ⇒ B = 3 π
Hence,
I = A + B = 4 π + 3 π = 1 2 7 π .
Thus, a + b + c = 2 0 .