Not so standard

Calculus Level 5

Evaluate: 0 ( 2 + f ( x ) ) ( 1 f ( x ) ) d x x 2 \int \limits_0^\infty ( 2 + f(x) )(1- f(x) ) \frac{ \text{d}x}{x^2} where, f ( x ) = sin x x \displaystyle f(x) = \frac{ \sin x }{x} .

The value of the integral can be expressed as a π b c \displaystyle \frac{a \pi ^b }{c} .

Given a a and c c are coprime, submit the value of a + b + c a+ b+ c .

Details and Assumptions:
Following integrals may be helpful:

  • 0 ( f ( x ) ) 2 d x = π 2 \displaystyle \int \limits_0^\infty \big( f(x) \big)^2 \text{d}x = \frac{ \pi }{2}

  • 0 ( f ( x ) ) 3 d x = 3 π 8 \displaystyle \int \limits_0^\infty \big( f(x) \big)^3 \text{d}x = \frac{3 \pi }{8}

  • 0 ( f ( x ) ) 4 d x = π 3 \displaystyle \int \limits_0^\infty \big( f(x) \big)^4 \text{d}x = \frac{ \pi }{3}


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sudeep Salgia
Jul 15, 2014

Let the required integral be I I . Substituting f ( x ) = sin x x \displaystyle f(x) = \frac{\sin x}{x} , in the integral, we obtain, I = 0 ( 2 x + sin x ) ( x sin x ) x 4 d x I = \int \limits_0^\infty \frac{(2x + \sin x)(x - \sin x )}{x^4} \text{d}x I = 0 2 x 2 x sin x sin 2 x x 4 d x \displaystyle \Rightarrow I = \int \limits_0^\infty \frac{2x^2 -x \sin x - \sin ^2 x }{x^4} \text{d}x I = 0 x 2 x sin x + x 2 sin 2 x x 4 d x \displaystyle \Rightarrow I = \int \limits_0^\infty \frac{x^2 -x \sin x + x^2 - \sin ^2 x }{x^4} \text{d}x I = 0 x sin x x 3 d x + 0 x 2 sin 2 x x 4 d x I = A + B \displaystyle \Rightarrow I = \int \limits_0^\infty \frac{x -\sin x}{x^3} \text{d}x + \int \limits_0^\infty \frac{x^2 -\sin^2 x}{x^4} \text{d}x \Rightarrow I = A + B
where, A = 0 x sin x x 3 d x \displaystyle A= \int \limits_0^\infty \frac{x -\sin x}{x^3} \text{d}x and B = 0 x 2 sin 2 x x 4 d x \displaystyle B= \int \limits_0^\infty \frac{x^2 -\sin^2 x}{x^4} \text{d}x .

I will evaluate these integrals not by any theorem but by a nice substitution. For A : x 3 y A : x \to 3y and for B : x 2 z B: x \to 2z .

Thus, now we have,
A = 0 3 y sin 3 y 27 y 3 ( 3 d y ) \displaystyle A = \int \limits_0^\infty \frac{3y -\sin 3y}{27y^3} (3 \text{d}y) 9 A = 0 3 y 3 sin y + 4 sin 3 y y 3 d y \displaystyle \Rightarrow 9A = \int \limits_0^\infty \frac{3y -3 \sin y + 4\sin ^3 y}{y^3} \text{d}y 9 A = 3 0 y sin y y 3 d y + 4 0 ( sin y y ) 3 d y \displaystyle \Rightarrow 9A =3 \int \limits_0^\infty \frac{y -\sin y}{y^3} \text{d}y + 4\int \limits_0^\infty \bigg( \frac{ \sin y}{y} \bigg)^3 \text{d}y 9 A = 3 A + 4 ( 3 π 8 ) A = π 4 \displaystyle \Rightarrow 9A = 3A + 4\bigg( \frac{3 \pi }{8} \bigg) \Rightarrow A= \frac{\pi }{4}

Also,
B = 0 4 z 2 sin 2 2 z 16 z 4 ( 2 d z ) \displaystyle B = \int \limits_0^\infty \frac{4z^2 - \sin^2 2z}{16z^4} (2\text{d}z) B = 4 8 0 z 2 sin 2 z cos 2 z z 4 d z \displaystyle \Rightarrow B = \frac{4}{8} \int \limits_0^\infty \frac{z^2 - \sin^2 z \cos^2 z}{z^4} \text{d}z 2 B = 0 z 2 sin 2 z + sin 4 z z 4 d z \displaystyle \Rightarrow 2B = \int \limits_0^\infty \frac{z^2 - \sin^2 z + \sin^4 z}{z^4} \text{d}z 2 B = 0 z 2 sin 2 z z 4 d z + 0 ( sin z z ) 4 d z \displaystyle \Rightarrow 2B = \int \limits_0^\infty \frac{z^2 - \sin^2 z}{z^4} \text{d}z + \int \limits_0^\infty \bigg( \frac{ \sin z }{z} \bigg)^4 \text{d}z 2 B = B + π 3 B = π 3 \displaystyle \Rightarrow 2B = B + \frac{\pi }{3} \Rightarrow B = \frac{\pi }{3}

Hence,
I = A + B = π 4 + π 3 = 7 π 12 \displaystyle I = A + B = \frac{\pi }{4} + \frac{\pi }{3} = \frac{7 \pi }{12} .
Thus, a + b + c = 20 a+b+c = \boxed{20} .

Brilliant solution!!! I evaluated the integral using a method given by @Haroun Meghaichi in a similar problem by @Pranav Arora . ¨ \ddot\smile

Karthik Kannan - 6 years, 11 months ago

Nicely done! Did you use a similar method to evaluate the problem I posted? If yes, I'd like to see it. :)

Pranav Arora - 6 years, 11 months ago

that was a beautiful solution!!

Surajit Rajagopal - 6 years, 11 months ago

Periodic function!! that's the key point to solve this problem. Nice solution!!!

Myung Chul Lee - 6 years, 11 months ago

hello guys!

I need your help finding out what is wrong in my solution, I checked it several times:

our integral can be written as :(A)

0 ( 2 x 2 ) d x 0 ( sin x x 3 ) d x 0 ( sin 2 x x 4 ) d x \int_0^\infty \mathrm(\frac{2}{x^2})\,\mathrm{d}x - \int_0^\infty \mathrm(\frac{\sin x}{x^3})\,\mathrm{d}x - \int_0^\infty \mathrm(\frac{\sin^2x}{x^4})\,\mathrm{d}x

1) the first integral diverges to \infty .

2)solving the second integral, we use the substitution x = 3 u x=3u :

0 ( sin x x 3 ) d x = 0 ( 3 sin u 4 sin 3 u 27 u 3 ) 3 d u \int_0^\infty \mathrm(\frac{\sin x}{x^3})\,\mathrm{d}x =\int_0^\infty \mathrm(\frac{3\sin u - 4\sin^3u}{27u^3})\,\mathrm{3d}u

rearranging, we get:

2 3 0 ( sin x x 3 ) d x = 4 9 0 ( ( f ( x ) ) 3 ) d x \frac{2}{3} \int_0^\infty \mathrm(\frac{\sin x}{x^3})\,\mathrm{d}x = -\frac{4}{9} \int_0^\infty \mathrm((f(x))^3)\,\mathrm{d}x

hence: 0 ( sin x x 3 ) d x = π 4 \boxed{\int_0^\infty \mathrm(\frac{\sin x}{x^3})\,\mathrm{d}x = -\frac{\pi}{4}}

3) solving the third integral, we use the substitution x = 2 u x=2u :

0 ( sin 2 x x 4 ) d x = 0 ( 4 sin 2 u cos 2 u 16 u 4 ) 2 d u = 0 ( ( sin 2 u ) ( 1 sin 2 u ) 2 u 4 ) d u \int_0^\infty \mathrm(\frac{\sin^2x}{x^4})\,\mathrm{d}x = \int_0^\infty \mathrm(\frac{4\sin^2u\cos^2u}{16u^4})\,\mathrm{2d}u = \int_0^\infty \mathrm(\frac{(\sin^2u)(1-\sin^2u)}{2u^4})\,\mathrm{d}u

rearranging, we get:

1 2 0 ( sin 2 x x 4 ) d x = 1 2 0 ( ( f ( x ) ) 4 ) d x \frac{1}{2}\int_0^\infty \mathrm(\frac{\sin^2x}{x^4})\,\mathrm{d}x = -\frac{1}{2} \int_0^\infty \mathrm((f(x))^4)\,\mathrm{d}x

hence, 0 ( sin 2 x x 4 ) d x = π 3 \boxed{\int_0^\infty \mathrm(\frac{\sin^2x}{x^4})\,\mathrm{d}x=-\frac{\pi}{3}}

therefore, replacing our 3 values in the expression (A) , we conclude that our integral diverges!!!

Hasan Kassim - 6 years, 10 months ago

Log in to reply

None of the three integral converges seperately.

Krishna Sharma - 5 years, 11 months ago

Log in to reply

But the calculation of their values reveals convergence, could you elaborate more please? tell me when we can split the integral, when we can't. Thanks!

Hasan Kassim - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...