Given line x + 2 y = 3 intersects circle x 2 + y 2 + x − 6 y + a = 0 at P and Q . If O is the origin and O P ⊥ O Q , what is the value of a ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Typo in 2nd line (it would be 9 instead of 3)
a 9 ( x + 2 y ) 2
Let the three points be O ( 0 , 0 ) , P ( x 1 , y 1 ) and Q ( x 2 , y 2 ) .
f ( n ) = { x + 2 y − 3 = 0 x 2 + y 2 + x − 6 y + a = 0
Substitute equation ( 1 ) to ( 2 ) ,
( 3 − 2 y ) 2 + y 2 + 3 − 2 y − 6 y + a 5 y 2 − 2 0 y + 1 2 + a = 0 = 0
y 1 + y 2 y 1 y 2 = 4 = 5 1 2 + a
Substitute y = 2 1 ( 3 − x ) , we have
x 1 + x 2 x 1 x 2 = − 2 = 5 4 a − 2 7
Given that O P ⊥ O Q , then
m o p m o q x 1 y 1 x 2 y 2 y 1 y 2 5 1 2 + a a = − 1 = − 1 = − x 1 x 2 = − 5 4 a − 2 7 = 3
Do you know about making curve 'homogeneous'? It would be lot more easier than this. (and perpendicular is the most important clue in this :D )
Log in to reply
I'm not aware of that solution. Can you share yours? :)
First we solve for the coordinates of P and Q . From x + 2 y = 3 ⇒ x = 3 − 2 y . Substitute this in the circle equation, we have:
x 2 + y 2 + x − 6 y + a = ( 3 − 2 y ) 2 + y 2 + ( 3 − 2 y ) − 6 y + a ⇒ 5 y 2 − 2 0 y + 1 2 + a = 0 ⇒ y = 2 ± 1 . 6 − 0 . 2 a = 2 ± α
⇒ y = { 2 + α 2 − α ⇒ x = 3 − 2 ( 2 + α ) = − 1 − 2 α ⇒ x = 3 − 2 ( 2 − α ) = − 1 + 2 α ⇒ P ( − 1 − 2 α , 2 + α ) ⇒ Q ( − 1 + 2 α , 2 − α )
Let the gradient of O P and O Q be m p and m q respectively, and since O P and O Q are perpendicular, then we have:
m p = − m q 1 ⇒ ( − 1 − 2 α ) − 0 ( 2 + α ) − 0 = − ( 2 − α ) − 0 ( − 1 + α ) − 0
⇒ ( 2 + α ) ( 2 − α ) = ( 1 + 2 α ) ( − 1 + α ) ⇒ 4 − α 2 = α 2 − 1 ⇒ 5 α 2 = 5 ⇒ α 2 = 1 ⇒ 1 . 6 − 0 . 2 a = 1 ⇒ 0 . 2 a = 0 . 6 ⇒ a = 3
L e t C 1 b e g i v e n ◯ ( x + 2 1 ) 2 + ( y − 3 ) 2 = 9 4 1 − a = R 2 , N ⊙ o f C 1 . C 2 b e ◯ t h r o u g h P O Q . B u t ∠ P O Q = 9 0 o ⟹ P Q i s i t s d i a m e t e r , M t h e ⊙ , a n d ∴ M O = r , r a d i u s o f C 2 . M i s a l s o t h e m i d p o i n t o f c h o r d P Q o f C 1 . P M = r . L 1 i s l i n e y = − 2 x + 2 3 ∴ L 2 ⊥ L 1 t h r o u g h N , i s y − 3 = 2 ∗ ( x + 2 1 ) ⟹ L 2 i s y = 2 x + 4 . L 1 a n d L 2 i n t e r s e c t a t M , ( − 1 , 2 ) ∴ N M 2 = ( − 1 − 2 − 1 ) 2 + ( 2 − 3 ) 2 = 4 5 . r 2 = M O 2 = ( − 1 ) 2 + 2 2 = 5 . ∴ 9 4 1 − a = R 2 = N M 2 + P M 2 = N M 2 + r 2 = 6 4 1 . a = 3
Problem Loading...
Note Loading...
Set Loading...
We can solve it by homogenizing the given circle with the given line. The equation of line can be written as :- 1 = 3 x + 2 y Now we will replace 1 with above expression so as to make the equation of circle homogeneous in 2 n d degree.
Hence the equation of circle becomes:- x 2 + y 2 + ( x − 6 y ) 3 ( x + 2 y ) + a 9 ( x + 2 y ) 2 = 0 Now, the above equation represents a pair of lines passing through origin and intersection point of the given line and circle.
Hence the two lines in above equation are O P and O Q . For O P ⊥ O Q the sum of coefficients of x 2 and y 2 should be 0 .
Coefficient of x 2 = 1 + 3 1 + 9 a .
Coefficient of y 2 = 1 − 4 + 9 4 a .
Now their sum is 0 hence a = 3