Not sure if perpendicular is a clue

Geometry Level 2

Given line x + 2 y = 3 x+2y=3 intersects circle x 2 + y 2 + x 6 y + a = 0 x^2+y^2+x-6y+a=0 at P P and Q Q . If O O is the origin and O P O Q OP\perp OQ , what is the value of a a ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Prakhar Gupta
Apr 2, 2015

We can solve it by homogenizing the given circle with the given line. The equation of line can be written as :- 1 = x + 2 y 3 1 = \dfrac{x+2y}{3} Now we will replace 1 1 with above expression so as to make the equation of circle homogeneous in 2 n d 2^{nd} degree.

Hence the equation of circle becomes:- x 2 + y 2 + ( x 6 y ) ( x + 2 y ) 3 + a ( x + 2 y ) 9 2 = 0 x^{2} + y^{2} + (x-6y)\dfrac{(x+2y)}{3} + a\dfrac{(x+2y)}{9}^{2} =0 Now, the above equation represents a pair of lines passing through origin and intersection point of the given line and circle.

Hence the two lines in above equation are O P OP and O Q OQ . For O P O Q OP\perp OQ the sum of coefficients of x 2 x^{2} and y 2 y^{2} should be 0 0 .

Coefficient of x 2 = 1 + 1 3 + a 9 x^{2} = 1+\dfrac{1}{3}+\dfrac{a}{9} .

Coefficient of y 2 = 1 4 + 4 a 9 y^{2} = 1-4+\dfrac{4a}{9} .

Now their sum is 0 0 hence a = 3 \boxed{a=3}

Typo in 2nd line (it would be 9 instead of 3)

a ( x + 2 y ) 2 9 a\dfrac{(x+2y)^2}{9}

Krishna Sharma - 6 years, 2 months ago

Log in to reply

Thanks. It is now corrected.

Prakhar Gupta - 6 years, 2 months ago
Christopher Boo
Apr 2, 2015

Let the three points be O ( 0 , 0 ) O(0,0) , P ( x 1 , y 1 ) P(x_1,y_1) and Q ( x 2 , y 2 ) Q(x_2, y_2) .

f ( n ) = { x + 2 y 3 = 0 x 2 + y 2 + x 6 y + a = 0 f(n) = \left\{ \begin{array}{l l} x+2y-3=0\\ x^2+y^2+x-6y+a=0 \end{array} \right.

Substitute equation ( 1 ) (1) to ( 2 ) (2) ,

( 3 2 y ) 2 + y 2 + 3 2 y 6 y + a = 0 5 y 2 20 y + 12 + a = 0 \begin{aligned} (3-2y)^2+y^2+3-2y-6y+a&=0 \\ 5y^2-20y+12+a&=0\end{aligned}

y 1 + y 2 = 4 y 1 y 2 = 12 + a 5 \begin{aligned} \displaystyle y_1+y_2&=4 \\ \\ y_1y_2&=\frac{12+a}{5} \\ \end{aligned}

Substitute y = 1 2 ( 3 x ) y=\frac{1}{2}(3-x) , we have

x 1 + x 2 = 2 x 1 x 2 = 4 a 27 5 \begin{aligned} x_1+x_2&=-2 \\ \\x_1x_2&=\frac{4a-27}{5} \end{aligned}

Given that O P O Q OP\perp OQ , then

m o p m o q = 1 y 1 x 1 y 2 x 2 = 1 y 1 y 2 = x 1 x 2 12 + a 5 = 4 a 27 5 a = 3 \begin{aligned} \displaystyle m_{op} m_{oq} &=-1 \\ \\ \frac{y_1}{x_1} \frac{y_2}{x_2}&= -1 \\ \\ y_1 y_2 &= -x_1 x_2 \\ \\ \frac{12+a}{5} &= -\frac{4a-27}{5} \\ \\ a&=3 \end{aligned}

Do you know about making curve 'homogeneous'? It would be lot more easier than this. (and perpendicular is the most important clue in this :D )

Krishna Sharma - 6 years, 2 months ago

Log in to reply

I'm not aware of that solution. Can you share yours? :)

Christopher Boo - 6 years, 2 months ago

Log in to reply

Phakhar gupta has written that solution :)

Krishna Sharma - 6 years, 2 months ago

First we solve for the coordinates of P P and Q Q . From x + 2 y = 3 x = 3 2 y x+2y=3\quad \Rightarrow x = 3 - 2y . Substitute this in the circle equation, we have:

x 2 + y 2 + x 6 y + a = ( 3 2 y ) 2 + y 2 + ( 3 2 y ) 6 y + a 5 y 2 20 y + 12 + a = 0 y = 2 ± 1.6 0.2 a = 2 ± α x^2+y^2+x-6y+a = (3-2y)^2+y^2+(3-2y) - 6y + a \\ \Rightarrow 5y^2-20y+12+a = 0\quad \Rightarrow y = 2 \pm \sqrt{1.6-0.2a} = 2 \pm \alpha

y = { 2 + α x = 3 2 ( 2 + α ) = 1 2 α P ( 1 2 α , 2 + α ) 2 α x = 3 2 ( 2 α ) = 1 + 2 α Q ( 1 + 2 α , 2 α ) \Rightarrow y = \begin{cases} 2 + \alpha & \Rightarrow x = 3-2(2+\alpha) = -1-2 \alpha & \Rightarrow P(-1-2\alpha, 2+\alpha) \\ 2 - \alpha & \Rightarrow x = 3-2(2-\alpha) = -1+2 \alpha & \Rightarrow Q(-1+2\alpha, 2-\alpha) \end{cases}

Let the gradient of O P OP and O Q OQ be m p m_p and m q m_q respectively, and since O P OP and O Q OQ are perpendicular, then we have:

m p = 1 m q ( 2 + α ) 0 ( 1 2 α ) 0 = ( 1 + α ) 0 ( 2 α ) 0 m_p = - \dfrac {1}{m_q} \quad \Rightarrow \dfrac {(2+\alpha)-0}{(-1-2\alpha)-0} = - \dfrac {(-1+\alpha)-0} {(2-\alpha)-0}

( 2 + α ) ( 2 α ) = ( 1 + 2 α ) ( 1 + α ) 4 α 2 = α 2 1 5 α 2 = 5 α 2 = 1 1.6 0.2 a = 1 0.2 a = 0.6 a = 3 \Rightarrow (2+\alpha)(2-\alpha) = (1+2\alpha)(-1+\alpha) \quad \Rightarrow 4 - \alpha^2 = \alpha^2 -1 \\ \Rightarrow 5\alpha^2 = 5\quad \Rightarrow \alpha^2 = 1 \\ \Rightarrow 1.6 - 0.2a = 1 \quad \Rightarrow 0.2a = 0.6 \quad \Rightarrow a = \boxed{3}

L e t C 1 b e g i v e n ( x + 1 2 ) 2 + ( y 3 ) 2 = 9 1 4 a = R 2 , N o f C 1 . C 2 b e t h r o u g h P O Q . B u t P O Q = 9 0 o P Q i s i t s d i a m e t e r , M t h e , a n d M O = r , r a d i u s o f C 2 . M i s a l s o t h e m i d p o i n t o f c h o r d P Q o f C 1 . P M = r . L 1 i s l i n e y = x 2 + 3 2 L 2 L 1 t h r o u g h N , i s y 3 = 2 ( x + 1 2 ) L 2 i s y = 2 x + 4. L 1 a n d L 2 i n t e r s e c t a t M , ( 1 , 2 ) N M 2 = ( 1 1 2 ) 2 + ( 2 3 ) 2 = 5 4 . r 2 = M O 2 = ( 1 ) 2 + 2 2 = 5. 9 1 4 a = R 2 = N M 2 + P M 2 = N M 2 + r 2 = 6 1 4 . a = 3 Let~ C_1~be~given~\bigcirc~(x+\dfrac{1}{2})^2+(y-3)^2=9\frac{1}{4}-a=R^2,~~N~\odot~of~C_1.\\~~\\ C_2~be~\bigcirc~through~POQ. But \angle ~POQ=90^o\\\implies~PQ~is~its~diameter, M~the~\odot,~and~\therefore~MO=r,~radius~of~C_2. \\\color{#D61F06}{M~is~also~the~midpoint~of~chord~PQ~of~C_1.~~PM=r.} \\L_1~is ~line~y=-\dfrac{x}{2}+\dfrac{3}{2} ~ \therefore L_2 \perp ~L_1~through~N, is~y-3=2*(x+\dfrac{1}{2})\\\implies~L_2~is~y=2x+4.~~~~~~~~~~L_1~and~L_2~intersect~at~M,(-1,2)\\ \therefore NM^2=(-1-\dfrac{-1}{2})^2+(2-3)^2=\dfrac{5}{4}.~~r^2=MO^2=(-1)^2+2^2=5.\\~~\\\therefore~9\frac{1}{4}- a=R^2=NM^2+PM^2=NM^2+r^2=6\frac{1}{4}. ~~~~~~~a=~~~~~~~~~~\large \color{#3D99F6}{\boxed{3} }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...