Not that easy 2

Calculus Level 3

If u = ln ( x 3 + y 3 + z 3 3 x y z ) u = \ln(x^3 + y^3 + z^3 -3xyz ) , simplify

x u x + y u y + z u z \large x\dfrac{\partial u}{\partial x} + y\dfrac{\partial u}{\partial y} +z\dfrac{\partial u}{\partial z}


Try more problems here .
-3 3 1 -2 12 None of these -1 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 18, 2016

u = ln ( x 3 + y 3 + z 3 3 x y z ) By chain rule, u x = 1 x 3 + y 3 + z 3 3 x y z ( 3 x 2 3 y z ) = 3 x 2 3 y z x 3 + y 3 + z 3 3 x y z Similarly, u y = 3 y 2 3 z x x 3 + y 3 + z 3 3 x y z u z = 3 z 2 3 x y x 3 + y 3 + z 3 3 x y z \begin{aligned} u & = \ln (x^3+y^3+z^3-3xyz) & \small \color{#3D99F6} \text{By chain rule,} \\ \frac {\partial u}{\partial x} & = \frac 1{x^3+y^3+z^3-3xyz} \cdot (3x^2 - 3yz) \\ & = \frac {3x^2 - 3yz}{x^3+y^3+z^3-3xyz} & \small \color{#3D99F6} \text{Similarly,} \\ \frac {\partial u}{\partial y} & = \frac {3y^2 - 3zx}{x^3+y^3+z^3-3xyz} \\ \frac {\partial u}{\partial z} & = \frac {3z^2 - 3xy}{x^3+y^3+z^3-3xyz} \end{aligned}

Therefore,

x u x + y u y + z u z = 3 x 3 3 x y z + 3 y 3 3 x y z + 3 z 3 3 x y z x 3 + y 3 + z 3 3 x y z = 3 ( x 3 + y 3 + z 3 3 x y z ) x 3 + y 3 + z 3 3 x y z = 3 \begin{aligned} x \frac {\partial u}{\partial x} + y \frac {\partial u}{\partial y} + z \frac {\partial u}{\partial z} & = \frac {3x^3 - 3xyz + 3y^3 - 3xyz + 3z^3 - 3xyz}{x^3+y^3+z^3-3xyz} \\ & = \frac {3(x^3+y^3+z^3-3xyz)}{x^3+y^3+z^3-3xyz} \\ & = \boxed{3} \end{aligned}

Prokash Shakkhar
Dec 18, 2016

Given that, u = l n ( x 3 + y 3 + z 3 3 x y z ) u= ln(x^3 + y^3+z^3-3xyz) ... Our aim is to find out partial derivative of the function f ( x , y , z ) = u f(x,y,z)=u .. So we can proceed on that way.... \Rightarrow x\frac{\delta u}{\delta x} +y\frac{\delta u}{\delta y}+ z\frac{\delta u}{\delta z} = \frac{3(x^3+y^3+z^3-3xyz)}{(x^3+y^3+z^3-3xyz)}=\boxed{\color\red{3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...