Not that large

Algebra Level 5

A = 1 1 × 2 + 1 3 × 4 + + 1 2003 × 2004 + 1 2005 × 2006 B = 1 1004 × 2006 + 1 1005 × 2005 + + 1 2006 × 1004 \begin{aligned} A&=&\frac{1}{1\times2}+\frac{1}{3\times4}+\cdots+\frac{1}{2003\times2004}+\frac{1}{2005\times2006} \\ B&=&\frac{1}{1004\times2006}+\frac{1}{1005\times2005}+\cdots+\frac{1}{2006\times1004} \end{aligned}

Find the value of A B {\frac{A}{B}} .


The answer is 1505.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

A = 1 1 2 + 1 3 1 4 + + 1 2005 1 2006 A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots+\frac{1}{2005}-\frac{1}{2006} = ( 1 + 1 3 + + 1 2005 ) ( 1 2 + 1 4 + + 1 2006 ) =\left(1+\frac{1}{3}+\ldots+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{2006}\right) = ( 1 + 1 2 + 1 3 + + 1 2015 ) 2 ( 1 2 + 1 4 + + 1 2006 ) =\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{2015}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{2006}\right) = 1 1004 + 1 1005 + + 1 2006 =\frac{1}{1004}+\frac{1}{1005}+\ldots+\frac{1}{2006} B = 1 3010 ( 3010 1004 × 2006 + 3010 1005 × 2005 + + 3010 2006 × 1004 ) B=\frac{1}{3010}\left(\frac{3010}{1004\times2006}+\frac{3010}{1005\times2005}+\ldots+\frac{3010}{2006\times1004} \right) = 2 3010 ( 1 1004 + 1 1005 + + 1 2006 ) =\frac{2}{3010}\left(\frac{1}{1004}+\frac{1}{1005}+\ldots+\frac{1}{2006}\right) A B = 3010 2 = 1505 \frac{A}{B}=\frac{3010}{2}=\boxed{1505}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...