Let and be real and independent variables. Find to 3 decimal places.
See its sister problem: Not that Snake!
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
f ( x ) = x + x ∫ 0 1 y 2 f ( y ) d y + x 2 ∫ 0 1 y f ( y ) d y = x + x c 1 + x 2 c 2
where, c 1 = ∫ 0 1 y 2 f ( y ) d y = ∫ 0 1 y 2 ( y + y c 1 + y 2 c 2 ) d y = 4 1 + 4 c 1 + 5 c 2
and, c 2 = ∫ 0 1 y f ( y ) d y = ∫ 0 1 y ( y + y c 1 + y 2 c 2 ) d y = 3 1 + 3 c 1 + 4 c 2
Solve to get: c 1 = 1 1 9 6 1 and c 2 = 1 1 9 8 0
⇒ f ( 1 ) = 1 + 1 1 9 6 1 + 1 1 9 8 0 ≈ 2 . 1 8 5