Evaluate
∫ 0 ∞ ( π 2 − x 2 ) ( ( 2 π ) 2 − x 2 ) ) ⋯ ( ( 2 0 1 9 π ) 2 − x 2 ) ( sin x ) 4 0 3 8 d x
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Sir, a minor typo. A d x is missing in the last line...
Problem Loading...
Note Loading...
Set Loading...
Note that ∫ 0 ∞ m 2 π 2 − x 2 sin 2 n x d x = 2 1 ∫ − ∞ ∞ m 2 π 2 − x 2 sin 2 n x d x = 4 m π 1 ∫ − ∞ ∞ ( m π − x 1 + m π + x 1 ) sin 2 n x d x = 4 m π 1 ( − ∫ − ∞ ∞ x sin 2 n x d x + ∫ − ∞ ∞ x sin 2 n x d x ) = 0 for any integers m , n ∈ N . The desired integral splits, using partial fractions, in to a sum of integrals of the above type, and hence is equal to 0 as well.