Not that tough

Calculus Level 3

Evaluate

0 ( sin x ) 4038 ( π 2 x 2 ) ( ( 2 π ) 2 x 2 ) ) ( ( 2019 π ) 2 x 2 ) d x \int_{0}^{\infty}\frac{(\sin x)^{4038}}{(\pi^{2}-x^{2})\big((2\pi)^{2}-x^2)\big)\cdots \big((2019\pi)^{2}-x^{2}\big)}dx


The answer is 0.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 1, 2019

Note that 0 sin 2 n x m 2 π 2 x 2 d x = 1 2 sin 2 n x m 2 π 2 x 2 d x = 1 4 m π ( 1 m π x + 1 m π + x ) sin 2 n x d x = 1 4 m π ( sin 2 n x x d x + sin 2 n x x d x ) = 0 \begin{aligned} \int_0^\infty \frac{\sin^{2n}x}{m^2\pi^2 - x^2}\,dx & = \; \frac12\int_{-\infty}^\infty \frac{\sin^{2n}x}{m^2\pi^2 - x^2}\,dx \; = \; \frac{1}{4m\pi}\int_{-\infty}^\infty \left(\frac{1}{m\pi-x} + \frac{1}{m\pi+x}\right)\sin^{2n}x\,dx \\ & = \; \frac{1}{4m\pi}\left(-\int_{-\infty}^\infty \frac{\sin^{2n}x}{x}\,dx + \int_{-\infty}^\infty \frac{\sin^{2n}x}{x}\,dx\right) \; = \; 0 \end{aligned} for any integers m , n N m,n \in \mathbb{N} . The desired integral splits, using partial fractions, in to a sum of integrals of the above type, and hence is equal to 0 \boxed{0} as well.

Sir, a minor typo. A d x dx is missing in the last line...

Aaghaz Mahajan - 1 year, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...