Quick Algebra Identities

Algebra Level 2

x = 3 2 3 + 2 , y = 3 + 2 3 2 , x 2 + x y + y 2 = ? \large \color{#D61F06}{x} = \color{#20A900} {\dfrac{ \sqrt{3} - \sqrt{2} }{ \sqrt{3} + \sqrt{2} }}, \quad \quad \color{#69047E}{y} = \color{#EC7300}{\dfrac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} - \sqrt{2} }}, \quad\quad \color{magenta}{x^2 + xy + y^2} = \, ?


The answer is 99.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Akshat Sharda
Oct 1, 2015

x = 3 2 3 + 2 = 5 2 6 x=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=5-2\sqrt{6}

y = 3 + 2 3 2 = 5 + 2 6 y=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=5+2\sqrt{6}

x 2 + x y + y 2 \Rightarrow x^2+xy+y^2

( x + y ) 2 x y \Rightarrow(x+y)^{2}-xy

1 0 2 1 = 99 \Rightarrow 10^{2}-1=\boxed{99}

Though all the solutions on this page are same,but i am upvoting your's one because of better representation, that's a skill
Bonus : use \dfrac instead of \frac . It will look better.
example : dfrac 3 2 and frac 3 2 \textbf{example} : \text{dfrac} \Rightarrow \dfrac{3}{2} \ \text{and} \text{ frac} \Rightarrow \frac{3}{2}

Akhil Bansal - 5 years, 8 months ago

Log in to reply

Thanks !! EDITED !!

Akshat Sharda - 5 years, 8 months ago

And how can we represent 'implies that' and 'plus-minus sign'

Manish Mayank - 5 years, 8 months ago

Log in to reply

\quad \quad
Input : \Rightarrow \quad \quad output : \Rightarrow
Input : \pm \quad \quad \quad \quad \quad output : ± \pm

Akhil Bansal - 5 years, 8 months ago

Rationalizing is the key word in such questions.

Debmeet Banerjee - 5 years, 7 months ago

Exactly same solution

Kushagra Sahni - 5 years, 8 months ago

how you close the formula for [x+y]^2 there is only xy not 2xy. you need 2xy to close the formula of [x+y]^2.

Syed Israr Ullah Shah - 5 years, 8 months ago

Log in to reply

You can use the method of complete the square, to get this:

x^2 + xy + xy -xy + y^2

x^2 + 2xy + y^2 - xy

(x+y)^2 -xy

Luciano Canela - 5 years, 8 months ago

x 2 + x y + y 2 = ( x + y ) 2 x y = ( 3 2 3 + 2 + 3 + 2 3 2 ) 2 3 2 3 + 2 × 3 + 2 3 2 = ( ( 3 2 ) 2 + ( 3 2 ) 2 3 2 ) 2 1 = ( 2 ( 3 + 2 ) ) 2 1 = 100 1 = 99 \begin{aligned} x^2 + xy + y^2 & = (x+y)^2 - xy \\ & = \left(\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} + \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} \right)^2 - \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} \\ & = \left(\frac{(\sqrt{3}-\sqrt{2})^2+(\sqrt{3}-\sqrt{2})^2}{3-2}\right)^2 - 1 \\ & = (2(3+2))^2 - 1 \\ & = 100 - 1 \\ & = \boxed{99} \end{aligned}

Rohit Udaiwal
Oct 1, 2015

Rationalize the denominator to get x = 5 2 6 x=5-2\sqrt {6} and y = 5 + 2 6 y=5+2\sqrt {6} . x 2 = 49 20 6 x^{2}=49-20\sqrt{6} , y 2 = 49 + 20 6 y^{2}=49+20\sqrt6 and x y = 1 xy=1 . So the value of x 2 + y 2 + x y = 99 x^2+y^2+xy=99 .

Dev Sharma
Oct 1, 2015

Rationalizing the denominator :

x = 5 2 6 x = 5 - 2\sqrt{6}

y = 5 + 2 6 y = 5 + 2\sqrt{6}

x 2 + y 2 + x y x^2 + y^2 + xy = ( x + y ) 2 x y (x + y)^{2} - xy = 1 0 2 1 10^2 - 1 = 99 99

@Dev Sharma You can display the square root symbol by using \sqrt{}.Put the radicand inside the { }.I have edited your solution.No need to worry :-)

Abdur Rehman Zahid - 5 years, 8 months ago

Log in to reply

thanks sir

Dev Sharma - 5 years, 7 months ago
Saksham Jain
Nov 11, 2017

Rationalise x and y Add and subtract xy in x²+y²+xy Then solve it

Mohit Garg
Oct 13, 2015

here note that, y=1/x; so given expression becomes =(x^2)+1+(1/x^2); also note ,x+y=x+1/x =10; now consider [x+1/x]^2=(x^2)+2+(1/x^2)= given expression+1;

          so  100=given expression+1;
       hence, given expression=99:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...