There are straight lines in a plane, no two of which are parallel and no three of which pass through the same point. Their points of intersection are joined and the number of new lines thus introduced is given by .
Find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
L e t A B b e a l i n e a n d l e t i t b e i n t e r s e c t e d b y C D a t a p o i n t P . C l e a r l y , P i s o n e o f t h e n − 1 p o i n t s f o r m e d b y A B ′ s i n t e r s e c t i o n w i t h t h e o t h e r l i n e s . S o t h e a g g r e g a t e o f a l l s u c h p o i n t s = n ( n − 1 ) . B u t e a c h s u c h p o i n t w o u l d b e c o u n t e d t w i c e . S o , t h e t o t a l n u m b e r o f p o i n t s = 2 n ( n − 1 ) . T h e n u m b e r o f p o i n t s o f i n t e r s e c t i o n o n A B a n d C D = 2 ( n − 1 ) − 1 . I f P i s j o i n e d t o a n y o f t h e s e p o i n t s , t h e n i t w o u l d n o t c o u n t a s a n e w l i n e . ∴ N u m b e r o f p o i n t s t h a t P c a n j o i n s o t h a t t h e l i n e s o f o r m e d c o u n t s a s a n e w l i n e = 2 n ( n − 1 ) − ( 2 n − 3 ) = 2 ( n − 2 ) ( n − 3 ) . S o t h e a g g r e g a t e o f a l l s u c h l i n e s = 2 n ( n − 1 ) ( 2 ( n − 2 ) ( n − 3 ) ) B u t o n c e a g a i n , a l l t h e l i n e s a r e c o u n t e d t w i c e . ⇒ T o t a l n u m b e r o f n e w l i n e s = 8 1 n ( n − 1 ) ( n − 2 ) ( n − 3 ) . ∴ ∣ a ∣ + ∣ b ∣ + ∣ c ∣ + ∣ d ∣ + ∣ e ∣ + ∣ f ∣ = 1 5 .