Not the ordinary kind

Calculus Level 5

n = 1 1 n 6 + n 4 = 1 90 ( A π 4 B π C + D π E + F π e G π 1 ) \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ n^{ 6 }+n^{ 4 } } } =\frac { 1 }{ 90 } \left( A{ \pi }^{ 4 }-B{ \pi }^{ C }+D{ \pi }-E+\frac { F\pi }{ { e }^{ G\pi }-1 } \right)

If A , B , C , D , E , F , G A,B,C,D,E,F,G are integers. Find A + B + C + D + E + F + G A+B+C+D+E+F+G


The answer is 200.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 18, 2018

Relevant wiki: Digamma Function

S = n = 1 1 n 6 + n 4 By partial fraction decomposition = n = 1 ( 1 n 4 1 n 2 + 1 n 2 + 1 ) Riemann zeta function ζ ( n ) = k = 1 1 k n = ζ ( 4 ) ζ ( 2 ) + k = 1 1 2 i ( 1 n i 1 n + i ) ψ 0 ( z + 1 ) = γ n = 1 ( 1 z + n 1 n ) = π 4 90 π 2 6 + 1 2 i ( ψ 0 ( 1 + i ) ψ 0 ( 1 i ) ) where ψ 0 ( ) is digamma function. = π 4 90 π 2 6 + 1 2 i ( 1 i π cot ( π i ) ) ψ 0 ( 1 z ) ψ 0 ( z ) = π cot ( π z ) = π 4 90 π 2 6 1 2 π ( e π + e π ) 2 ( e π e π ) ψ 0 ( 1 + z ) = ψ 0 ( z ) + 1 z = π 4 90 π 2 6 1 2 + π ( e 2 π + 1 ) 2 ( e 2 π 1 ) = π 4 90 π 2 6 1 2 + π 2 + π e 2 π 1 = 1 90 ( π 4 15 π 2 + 45 π 45 + 90 π e 2 π 1 ) \begin{aligned} S & = \sum_{n=1}^\infty \frac 1{n^6+n^4} & \small \color{#3D99F6} \text{By partial fraction decomposition} \\ & = \sum_{n=1}^\infty \left({\color{#3D99F6} \frac 1{n^4}} - {\color{#3D99F6}\frac 1{n^2}} + \color{#D61F06} \frac 1{n^2+1} \right) & \small \color{#3D99F6} \text{Riemann zeta function }\zeta (n) = \sum_{k=1}^\infty \frac 1{k^n} \\ & = {\color{#3D99F6} \zeta(4)} - {\color{#3D99F6}\zeta(2)} + \color{#D61F06} \sum_{k=1}^\infty \frac 1{2i} \left(\frac 1{n-i} - \frac 1{n+i} \right) & \small \color{#D61F06} \psi_0 (z+1)= - \gamma - \sum_{n=1}^\infty \left(\frac 1{z+n} - \frac 1n \right) \\ & = {\color{#3D99F6} \frac {\pi^4}{90}} - {\color{#3D99F6} \frac {\pi^2}6} + \color{#D61F06} \frac 1{2i} \left(\psi_0 (1+i) - \psi_0 (1-i)\right) & \small \color{#D61F06} \text{where }\psi_0 (\cdot) \text{ is digamma function.} \\ & = \frac {\pi^4}{90} - \frac {\pi^2}6 + \color{#D61F06} \frac 1{2i} \left(\frac 1i - \pi \cot (\pi i) \right) & \small \color{#D61F06} \psi_0 (1-z) - \psi_0(z) = \pi \cot (\pi z) \\ & = \frac {\pi^4}{90} - \frac {\pi^2}6 - \frac 12 - \frac {\pi \left(e^{-\pi} + e^\pi \right)}{2 \left(e^{-\pi} - e^\pi \right)} & \small \color{#D61F06} \psi_0 (1+z) = \psi_0(z) + \frac 1z \\ & = \frac {\pi^4}{90} - \frac {\pi^2}6 - \frac 12 + \frac {\pi \left(e^{2\pi}+1 \right)}{2 \left(e^{2\pi}-1 \right)} \\ & = \frac {\pi^4}{90} - \frac {\pi^2}6 - \frac 12 + \frac \pi 2 + \frac {\pi}{e^{2\pi}-1} \\ & = \frac 1{90} \left(\pi^4 - 15\pi^2 + 45 \pi - 45 + \frac {90\pi}{e^{2\pi}-1} \right) \end{aligned}

Therefore, A + B + C + D + E + F + G = 1 + 15 + 2 + 45 + 45 + 90 + 2 = 200 A+B+C+D+E+F+G = 1+15+2+45+45+90+2 = \boxed{200} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...