Not Three, But Four Incircles!

Geometry Level 5

Four identical circles are positioned inside the unit equilateral triangle. Each of the three incircles is tangent to one of the three red lines, whereas the remaining incircle is positioned inside the central triangle.

If the radius of the circle is r r , input 1 0 5 r \lfloor 10^5 r\rfloor as your answer.


The answer is 12276.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Feb 17, 2021

Label the diagram as follows, and let A F = E D = k AF = ED = k :

By the law of cosines on A D E \triangle ADE , A D = D E 2 + A E 2 2 D E A E cos D E A = k 2 + 1 2 k 1 2 = k 2 2 k + 1 AD = \sqrt{DE^2 + AE^2 - 2 \cdot DE \cdot AE \cdot \cos \angle DEA} = \sqrt{k^2 + 1 - 2 \cdot k \cdot \frac{1}{2}} = \sqrt{k^2 - 2k + 1} .

Since A B F A E D \triangle ABF \sim \triangle AED by AA similarity, A B = A F A E A D = k 1 k 2 2 k + 1 = k k 2 2 k + 1 AB = AF \cdot \cfrac{AE}{AD} = k \cdot \cfrac{1}{\sqrt{k^2 - 2k + 1}} = \cfrac{k}{\sqrt{k^2 - 2k + 1}} and B F = A F D E A D = k k k 2 2 k + 1 = k 2 k 2 2 k + 1 = C D BF = AF \cdot \cfrac{DE}{AD} = k \cdot \cfrac{k}{\sqrt{k^2 - 2k + 1}} = \cfrac{k^2}{\sqrt{k^2 - 2k + 1}} = CD .

Then B C = A D A B C D = k 2 2 k + 1 k k 2 2 k + 1 k 2 k 2 2 k + 1 = 1 2 k k 2 2 k + 1 BC = AD - AB - CD = \sqrt{k^2 - 2k + 1} - \cfrac{k}{\sqrt{k^2 - 2k + 1}} - \cfrac{k^2}{\sqrt{k^2 - 2k + 1}} = \cfrac{1 - 2k}{\sqrt{k^2 - 2k + 1}} .

As an incircle of the red equilateral, r = 1 2 3 B C = 1 2 3 1 2 k k 2 2 k + 1 = 1 2 k 2 3 k 2 2 k + 1 r = \cfrac{1}{2\sqrt{3}} \cdot BC = \cfrac{1}{2\sqrt{3}} \cdot \cfrac{1 - 2k}{\sqrt{k^2 - 2k + 1}} = \cfrac{1 - 2k}{2\sqrt{3}\sqrt{k^2 - 2k + 1}} .

As an incircle of A D E \triangle ADE , r = D E A E sin D E A D E + A E + A D = k 1 3 2 k + 1 + k 2 k + 1 = 3 k 2 ( k + 1 + k 2 2 k + 1 ) r = \cfrac{DE \cdot AE \cdot \sin \angle DEA}{DE + AE + AD} = \cfrac{k \cdot 1 \cdot \frac{\sqrt{3}}{2}}{k + 1 + \sqrt{k^2 - k + 1}} = \cfrac{\sqrt{3}k}{2(k + 1 + \sqrt{k^2 - 2k + 1})} .

So r = 1 2 k 2 3 k 2 2 k + 1 = 3 k 2 ( k + 1 + k 2 2 k + 1 ) r = \cfrac{1 - 2k}{2\sqrt{3}\sqrt{k^2 - 2k + 1}} = \cfrac{\sqrt{3}k}{2(k + 1 + \sqrt{k^2 - 2k + 1})} , which solves numerically to r 0.122761 r \approx 0.122761 and k 0.311549 k \approx 0.311549 .

Therefore, 1 0 5 r = 12276 \lfloor 10^5 r \rfloor = \boxed{12276} .

Chew-Seong Cheong
Feb 16, 2021

Label the unit equilateral triangle A B C ABC , the bottom red line be A D AD , the centers of the central circle and the right circle be O O and P P respectively. Let O M OM and P N PN be perpendicular to A B AB , O M OM cuts A D AD at E E , and the central circle tangent to A D AD at F F .

Let D A B = E O F = θ \angle DAB = \angle EOF = \theta . Then we have:

A N + N B = A B r cot θ 2 + r cot 3 0 = 1 Let t = tan θ 2 r t + 3 t = 1 t = 1 1 t + 3 = t 3 t + 1 \begin{aligned} AN + NB & = AB \\ r \cot \frac \theta 2 + r \cot 30^\circ & = 1 & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ \frac rt + \sqrt 3t & = 1 \\ \implies t & = \frac 1{\frac 1t + \sqrt 3} = \frac t{\sqrt 3 t +1} \end{aligned}

Also

E M A M = tan D A B O M O E A M = tan D A B 1 2 3 r sec θ 1 2 = tan θ cos θ 2 3 r = 3 sin θ r = cos θ 3 sin θ 2 3 = 1 t 2 2 3 t 2 3 ( 1 + t 2 ) \begin{aligned} \frac {EM}{AM} & = \tan \angle DAB \\ \frac {OM - OE}{AM} & = \tan \angle DAB \\ \frac {\frac 1{2\sqrt 3} - r \sec \theta}{\frac 12} & = \tan \theta \\ \cos \theta - 2\sqrt 3 r & = \sqrt 3 \sin \theta \\ \implies r & = \frac {\cos \theta - \sqrt 3 \sin \theta}{2\sqrt 3} = \frac {1-t^2-2\sqrt 3 t}{2\sqrt 3 (1+t^2)} \end{aligned}

Therefore we have:

1 t 2 2 3 t 2 3 ( 1 + t 2 ) = t 3 t + 1 ( 1 2 3 t t 2 ) ( 1 + 3 t ) = 2 3 t ( 1 + t 2 ) 3 3 t 3 + 7 t 2 + 3 3 t 1 = 0 t 0.155912545 r = t 3 t + 1 0.1227611 \begin{aligned} \frac {1-t^2-2\sqrt 3 t}{2\sqrt 3 (1+t^2)} & = \frac t{\sqrt 3 t +1} \\ (1-2\sqrt 3 t - t^2)(1+\sqrt 3 t) & = 2\sqrt 3 t (1+t^2) \\ 3\sqrt 3 t^3 + 7 t^2 + 3 \sqrt 3 t - 1 & = 0 \\ \implies t & \approx 0.155912545 \\ \implies r & = \frac t{\sqrt 3 t + 1} \approx 0.1227611 \end{aligned}

Therefore 1 0 5 r = 12276 \lfloor 10^5r \rfloor = \boxed{12276} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...