A calculus problem by rahul singh

Calculus Level 4

0 1 x 7 1 ln x d x \int_0^1 \dfrac{x^7 - 1}{\ln x} \, dx Evaluate the integral above to 3 decimal places.


The answer is 2.079.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 25, 2019

I ( a ) = 0 1 x a 1 ln x d x Let x = e u d x = e u d u = 0 e u ( e a u 1 ) u d u I ( a ) a = 0 e ( a + 1 ) u d u = e ( a + 1 ) u a + 1 0 = 1 a + 1 I ( a ) = 1 a + 1 d a = ln ( a + 1 ) + C where C is the constant of integration. I ( 0 ) = ln 1 + C = 0 C = 0 I ( a ) = ln ( a + 1 ) I ( 7 ) = ln 8 2.079 \begin{aligned} I(a) & = \int_0^1 \frac {x^a-1}{\ln x} dx & \small \color{#3D99F6} \text{Let }x = e^u \implies dx = e^u du \\ & = \int_{-\infty}^0 \frac {e^u(e^{au}-1)}u du \\ \frac {\partial I(a)}{\partial a} & = \int_{-\infty}^0 e^{(a+1)u} du = \frac {e^{(a+1)u}}{a+1} \bigg|_{-\infty}^0 = \frac 1{a+1} \\ \implies I(a) & = \int \frac 1{a+1} da = \ln (a+1) + \color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ I(0) & = \ln 1 + C = 0 & \small \color{#3D99F6} \implies C = 0 \\ \implies I(a) & = \ln (a+1) \\ I(7) & = \ln 8 \approx \boxed{2.079} \end{aligned}

x 7 1 log ( x ) d x Ei ( 8 log ( x ) ) li ( x ) \int \frac{x^7-1}{\log (x)} \, dx \Rightarrow \text{Ei}(8 \log (x))-\text{li}(x)

Ei ( 8 log ( 0 ) ) li ( 0 ) 0 \text{Ei}(8 \log (0))-\text{li}(0) \Rightarrow 0

lim x 1 ( Ei ( 8 log ( x ) ) li ( x ) ) log ( 8 ) 2.07944154167984 \underset{x\to 1}{\text{lim}}(\text{Ei}(8 \log (x))-\text{li}(x)) \Rightarrow \log (8) \approx 2.07944154167984

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...