Not complex at all

Calculus Level 5

If

0 1 ( 3 ) x d x = a + i b \large{\displaystyle{\int _{ 0 }^{ 1 }{ { (-3) }^{ x } } dx=-a+ib}}

where i i is imaginary unit. Find 100 a b \left\lfloor 100ab \right\rfloor .

Note: That the principal value of the complex exponentiation.


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Sep 20, 2015

0 1 ( 3 ) x d x = 0 1 ( 3 e i π ) x d x e i π = cos π + i sin π = 1 = 0 1 ( e ln 3 e i π ) x d x e ln 3 = 3 = 0 1 e ( ln 3 + i π ) x d x = [ e ( ln 3 + i π ) x ln 3 + i π ] 0 1 = [ ( 3 ) x ln 3 + i π ] 0 1 = ( 3 ) 1 ( 3 ) 0 ln 3 + i π = 4 ln 3 + i π = 4 ln 3 + i 4 π ( ln 3 ) 2 + π 2 = 0.396734346 + i 1.13450188 \begin{aligned} \int_0^1 (-3)^x dx & = \int_0^1 (3\color{#3D99F6}{e^{i \pi}})^x dx \quad \quad \small \color{#3D99F6}{e^{i \pi} = \cos \pi + i \sin \pi = -1} \\ & = \int_0^1 (\color{#3D99F6}{e^{\ln{3}}}e^{i \pi})^x dx \quad \quad \small \color{#3D99F6}{e^{\ln 3}=3} \\ & = \int_0^1 e^{(\ln{3} +i \pi)x} dx \\ & = \left[ \frac{e^{(\ln{3} +i \pi)x}}{\ln{3} +i \pi} \right]_0^1 = \left[ \frac{(-3)^x}{\ln{3} +i \pi} \right]_0^1 = \frac{(-3)^1 - (-3)^0}{\ln{3} +i \pi} = \frac{-4}{\ln{3} +i \pi} \\ & = \frac{-4 \ln{3}+ i4\pi}{(\ln{3})^2+\pi^2} = - 0.396734346 + i 1.13450188 \end{aligned}

100 a b = 45.00958615 = 45 \Rightarrow \lfloor 100ab \rfloor = \lfloor 45.00958615 \rfloor = \boxed{45}

Santiago Hincapie
Sep 20, 2015

First note than a x d x = a x ln a \int { a^{x}dx }=\frac{a^x}{\ln{a}} then 0 1 ( 3 ) x d x = ( 3 ) x ln ( 3 ) \int_{0} ^{1} { (-3)^{x}dx }=\frac{(-3)^x}{\ln{(-3)}} This evaluates to 4 ln 3 = 4 ln 3 ln 1 \frac{-4}{\ln{-3}}=-\frac{4}{\ln{3}\ln{-1}} , then from euler's identity i have that -\frac { 4 }{ \ln { 3 } +i\pi } =-\frac { 4 }{ \ln { 3 } +i \pi } \frac { \ln { 3-i \pi } }{ \ln { 3 } -i \pi } =\frac { -4\ln { 3 } +4i \pi }{ \ln { ^{ 2 } } { 3 }+\pi ^{ 2 } } =-\frac {4\ln { 3 } }{ \ln { ^{ 2 } } { 3 }+\pi ^{ 2 } } +\frac { 4\pi }{ \ln { ^{ 2 } } { 3 }+\pi ^{ 2 } } i now a= 4 ln 3 ln 2 3 + π 2 \frac { 4\ln{3} }{ \ln { ^{ 2 } } { 3 }+\pi ^{ 2 } } , b= 4 π ln 2 3 + π 2 \frac { 4\pi }{ \ln { ^{ 2 } } { 3 }+\pi ^{ 2 } } and 100 a b = 45 \left\lfloor 100ab \right\rfloor =45

a x d x = a x ln a \int { a^{x}dx }=\frac{a^x}{\ln{a}} * for the fundamental theorem of calculus i have { a^{ x } }=\frac { d }{ dx } \frac { a^{ x } }{ \ln { a } } \\ a^x=\frac{1}{\ln{a}}\frac{d}{dx}e^{x\ln{a}}\\ a^x=\frac{1}{\ln{a}}e^{\ln{a^x}}\ln{a}\\ a^x=a^x

Santiago Hincapie - 5 years, 8 months ago
Akhilesh Vibhute
Jan 16, 2016

-3=3(CosPI+SinPI) Apply De Moivre's theorem

Ben Habeahan
Sep 20, 2015

Let say u = ( 3 ) x u = (-3)^x and we can have d u = ( 3 ) x ( ln ( 3 ) + i π ) d x du = (-3)^x (\ln(3)+i \pi) dx or d u ln ( 3 ) + i π = ( 3 ) x d x : \frac{du}{ \ln(3)+i \pi}= (-3)^x dx :

So,

0 1 ( 3 ) x d x = 1 3 d u ln ( 3 ) + i π = u ln ( 3 ) + i π 1 3 = 4 ln ( 3 ) + i π = ( 4 ) ( ln ( 3 ) i π ) ( ln ( 3 ) ) 2 ( i π ) 2 = ( 4 ) ( ln ( 3 ) ) ( ln ( 3 ) ) 2 + π 2 + 4 π ( ln ( 3 ) ) 2 + π 2 i \begin{array}{lcl}\int_{0}^{1}(-3)^{x} dx &=&\int_{1}^{-3} \frac{du}{ \ln(3)+i \pi}\\ &= &\frac{u}{\ln(3)+i \pi}|_{1}^{-3} \\ &= &\frac{-4}{\ln(3)+i \pi} \\ &=& \frac{(-4)(\ln(3)-i\pi)}{(\ln(3))^2-(i \pi)^2} \\&=& \frac{(-4)(\ln(3))}{(\ln(3))^2+\pi^2} + \frac{4\pi}{(\ln(3))^2+\pi^2}i \end{array}

100 ( 4 ) ( ln ( 3 ) ) ( ln ( 3 ) ) 2 + π 2 4 π ( ln ( 3 ) ) 2 + π 2 = 45 \implies \big\lfloor 100 * {\frac{(4)(\ln(3))}{(\ln(3))^2+\pi^2} * \frac{4\pi}{(\ln(3))^2+\pi^2}}\big\rfloor=\boxed{45}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...