Not very difficult

Algebra Level 4

What's the minimum value of A?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

A = 9 + x 2 3 x 2 + 16 + x 2 4 x 2 A = \sqrt{9+x^2-3x\sqrt{2}} + \sqrt{16+x^2-4x\sqrt{2}}

= x 2 6 2 x + 9 2 + 9 2 + x 2 4 x 2 + 8 + 8 \quad = \sqrt{x^2-\frac {6}{ \sqrt{2}}x +\frac {9}{2} +\frac {9}{2}} + \sqrt{ x^2-4x\sqrt{2} + 8 + 8}

= ( x 3 2 ) 2 + 9 2 + ( x 2 2 ) 2 + 8 \quad = \sqrt{(x-\frac {3}{ \sqrt{2}})^2 +\frac {9}{2}} + \sqrt{ (x-2\sqrt{2} )^2 + 8 }

= ( x 3 2 ) 2 + ( 0 3 2 ) 2 + ( x 2 2 ) 2 + ( 0 2 2 ) 2 \quad = \sqrt{(x-\frac {3}{ \sqrt{2}})^2 + (0 -\frac {3}{ \sqrt{2}})^2} + \sqrt{ (x-2\sqrt{2} )^2 +(0 -2\sqrt{2})^2 }

Therefore, A A is the sum of lengths of two straight lines ( x , 0 ) (x,0) , ( 3 2 , 3 2 ) (\frac {3}{ \sqrt{2}},\frac {3}{ \sqrt{2}}) and ( x , 0 ) (x,0) , ( 2 2 , 2 2 ) (2\sqrt{2}, 2\sqrt{2}) .

The shortest total length is that traveled by light from ( 3 2 , 3 2 ) (\frac {3}{ \sqrt{2}},\frac {3}{ \sqrt{2}}) to ( 2 2 , 2 2 ) (2\sqrt{2}, 2\sqrt{2}) reflected at the x x -axis at ( x , 0 ) (x,0) . And the angle of incident = angle of reflection.

Therefore, x 3 2 3 2 = 2 2 x 2 2 2 3 x 1 = 1 1 2 2 x \dfrac {x - \frac {3}{ \sqrt{2}}} {\frac {3}{ \sqrt{2}}} = \dfrac {2\sqrt{2}-x}{ 2 \sqrt{2} } \quad \Rightarrow \frac {\sqrt{2}} {3} x - 1 = 1 - \frac {1} {2\sqrt{2}} x

( 2 3 + 1 2 2 ) x = 2 ( 2 3 + 2 4 ) x = 2 7 2 12 x = 2 x = 12 2 7 \Rightarrow (\frac {\sqrt{2}} {3} + \frac {1} {2\sqrt{2}} ) x = 2 \quad \Rightarrow (\frac {\sqrt{2}} {3} + \frac {\sqrt{2}} {4}) x = 2 \quad \Rightarrow \frac {7\sqrt{2}} {12} x = 2 \quad \Rightarrow x = \frac {12\sqrt{2}} {7}

Substitute x = 12 2 7 x = \frac {12\sqrt{2}} {7} in A A , we have:

A m i n = ( 12 2 7 3 2 2 ) 2 + 9 2 + ( 12 2 7 2 2 ) 2 + 8 A_{min} = \sqrt{( \frac {12\sqrt{2}} {7} -\frac {3\sqrt{2}} {2})^2 +\frac {9}{2}} + \sqrt{ ( \frac {12\sqrt{2}} {7} -2\sqrt{2} )^2 + 8 }

= ( 3 2 14 ) 2 + 9 2 + ( 2 2 7 ) 2 + 8 \quad \quad = \sqrt{( \frac {3\sqrt{2}} {14} )^2 +\frac {9}{2}} + \sqrt{( -\frac {2\sqrt{2}} {7} )^2 + 8 }

= 18 196 + 9 2 + 8 49 + 8 = 900 196 + 400 49 = 5 \quad \quad = \sqrt{\frac {18} {196} +\frac {9}{2}} + \sqrt{\frac {8} {49} + 8 } = \sqrt{\frac {900} {196}} + \sqrt{\frac {400} {49}} = \boxed{5}

Or you could have taken the reflection of one point say ( 2 2 , 2 2 ) (2√2,2√2) through the x x- axis so that the minimum value would be the distance between ( 3 2 , 3 2 ) (\frac{3}{√2},\frac{3}{√2}) & ( 2 2 , 2 2 ) (2√2,-2√2) .

It'd have been a fast move.

Sanjeet Raria - 6 years, 7 months ago

Chew-Seong Cheong, this is a stroke of genius! What a delight it was to read this solutions! Thanks for posting it.

Ujjwal Rane - 6 years, 6 months ago

Sir You are the most intelligent man on brilliant, hats off to you

Mehul Chaturvedi - 6 years, 5 months ago

Excellent solution. Thank you. I have solved using differential calculus concept.

Bhargav Upadhyay - 6 years, 5 months ago

Can't it be negative 5 because we have to find the minimum value of A ? And root can be negative.

Arya Ukunde - 6 years, 5 months ago
Deepanshu Gupta
Nov 5, 2014

Let's Do some geometric ! Let's The given expression in question be E

Now Inter-prate that This expression is written in form of cosine law .

According to figure : Figure Figure

E = AD + DC

and By Triangle inequality in Triangle ADC :

A D + D C A C AD\quad +\quad DC\quad \ge \quad AC .

And For calculating AC note that Triangle ABC is right angled triangle.

So By Pythogoras Theoram :

A C = 5 AC = 5 .

E m i n = A m i n = 5 { E }_{ min }\quad =\quad { A }_{ min }\quad =\quad 5\quad \quad \quad .

Q.E.D

whooaa !! Fab. Observation

Karan Shekhawat - 6 years, 7 months ago

I like your solution. Appreciable.

Ninad Akolekar - 6 years, 5 months ago
Mehul Chaturvedi
Dec 18, 2014

First Of all differentiate A 'A'

d d x ( 9 + x 2 3 x 2 1 + 16 + x 2 4 x 2 1 ) = ( 2 x 4 2 2 x 2 4 x 2 + 16 + 2 x 3 2 2 9 + x 2 3 x 2 ) \Large{\frac { d }{ dx } \left( \frac { \sqrt { 9+{ x }^{ 2 }-3x\sqrt { 2 } } }{ 1 } +\frac { \sqrt { 16+{ x }^{ 2 }-4x\sqrt { 2 } } }{ 1 } \right) \\ =\left( \frac { 2x-4\sqrt { 2 } }{ 2\sqrt { x^{ 2 }-4x\sqrt { 2 } +16 } } +\frac { 2x-3\sqrt { 2 } }{ 2\sqrt { 9+{ x }^{ 2 }-3x\sqrt { 2 } } } \right)}

Now to maximize it

( 2 x 4 2 2 x 2 4 x 2 + 16 + 2 x 3 2 2 9 + x 2 3 x 2 ) = 0 x = 12 2 7 \Large{\left( \frac { 2x-4\sqrt { 2 } }{ 2\sqrt { x^{ 2 }-4x\sqrt { 2 } +16 } } +\frac { 2x-3\sqrt { 2 } }{ 2\sqrt { 9+{ x }^{ 2 }-3x\sqrt { 2 } } } \right) =0\\ \therefore \quad x=\frac { 12\sqrt { 2 } }{ 7 }}

Now placing value of x x in A 'A' we get A = 5 \boxed{\large{A=5}}

Its a challenge to all to solve ( 2 x 4 2 2 x 2 4 x 2 + 16 + 2 x 3 2 2 9 + x 2 3 x 2 ) = 0 \Large{\left( \frac { 2x-4\sqrt { 2 } }{ 2\sqrt { x^{ 2 }-4x\sqrt { 2 } +16 } } +\frac { 2x-3\sqrt { 2 } }{ 2\sqrt { 9+{ x }^{ 2 }-3x\sqrt { 2 } } } \right) =0}

Mehul Chaturvedi - 6 years, 5 months ago

Log in to reply

Actually its not that harder......it seems to be type of f'(x)/[f (x)]^n........

Rahul Kamble - 6 years, 5 months ago
Prajwal Jain
Nov 29, 2014

differentiate once,then equate to zero.....you'll get the value of "x",substitute in the equation and ....................job done :)

Would you please differentiate it STEP BY STEP

Mehul Chaturvedi - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...