Not very tough

Calculus Level 3

Let f ( x ) = 9 x 9 x + 3 f(x)= \dfrac{9^x}{9^x+3} . Evaluate

f ( 1 2018 ) + f ( 2 2018 ) + f ( 3 2018 ) + + f ( 2017 2018 ) f \left(\frac{1}{2018}\right) + f\left(\frac{2}{2018}\right) +f\left(\frac{3}{2018}\right)+\cdots +f\left(\frac{2017}{2018}\right)


The answer is 1008.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 25, 2017

Consider f ( x ) + f ( 1 x ) f(x)+f(1-x) :

f ( x ) + f ( 1 x ) = 9 x 9 x + 3 + 9 1 x 9 1 x + 3 = 9 x 9 x + 3 + 9 x 9 1 x 9 x ( 9 1 x + 3 ) = 9 x 9 x + 3 + 9 9 + 3 9 x = 9 x 9 x + 3 + 3 3 + 9 x = 1 \begin{aligned} f(x) + f(1-x) & = \frac {9^x}{9^x+3} + \frac {9^{1-x}}{9^{1-x}+3} \\ & = \frac {9^x}{9^x+3} + \frac {9^x\cdot 9^{1-x}}{9^x(9^{1-x}+3)} \\ & = \frac {9^x}{9^x+3} + \frac 9{9+3\cdot9^x} \\ & = \frac {9^x}{9^x+3} + \frac 3{3+9^x} \\ & = 1 \end{aligned}

Now, we have:

S = f ( 1 2018 ) + f ( 2 2018 ) + f ( 3 2018 ) + + f ( 2015 2018 ) + f ( 2016 2018 ) + f ( 2017 2018 ) = f ( 1 2018 ) + f ( 2017 2018 ) + f ( 2 2018 ) + f ( 2016 2018 ) + + f ( 1008 2018 ) + f ( 1010 2018 ) + f ( 1009 2018 ) = f ( 1 2018 ) + f ( 1 1 2018 ) = 1 + f ( 2 2018 ) + f ( 1 2 2018 ) = 1 + + f ( 1008 2018 ) + f ( 1 1008 2018 ) = 1 + 1 2 ( f ( 1009 2018 ) + f ( 1 1009 2018 ) ) = 1 = 1 + 1 + 1 + + 1 Number of 1’s = 1008 + 1 2 = 1008.5 \begin{aligned} S & = \small f \left(\frac{1}{2018}\right) + f\left(\frac{2}{2018}\right) +f\left(\frac{3}{2018}\right)+\cdots +f\left(\frac{2015}{2018}\right) +f\left(\frac{2016}{2018}\right) +f\left(\frac{2017}{2018}\right) \\ & = \small f \left(\frac{1}{2018}\right) + f\left(\frac{2017}{2018}\right) +f\left(\frac{2}{2018}\right)+f\left(\frac{2016}{2018}\right)+\cdots +f\left(\frac{1008}{2018}\right) +f\left(\frac{1010}{2018}\right) +f\left(\frac{1009}{2018}\right) \\ & = \small \underbrace{f \left(\frac{1}{2018}\right) + f\left(1-\frac{1}{2018}\right)}_{= \ 1} +\underbrace{f\left(\frac{2}{2018}\right)+f\left(1-\frac{2}{2018}\right)}_{= \ 1}+\cdots +\underbrace{f\left(\frac{1008}{2018}\right) +f\left(1-\frac{1008}{2018}\right)}_{= \ 1} +\frac 12 \underbrace{\left(f\left(\frac{1009}{2018}\right) + f\left(1-\frac{1009}{2018}\right) \right)}_{= \ 1} \\ & = \underbrace{1+1+1+\cdots+1} _{\text{Number of 1's } = 1008} + \frac 12 \\ & = \boxed{1008.5} \end{aligned}

Correct! The key is to identify that f(x) = f(1-x)

Jaya Krishna - 4 years ago

Don't know what it has to do with the given function, but anyhow:

1 + 2 + 3 + + 2016 + 2017 = 1 2 2017 2018 1+2+3+ \dots + 2016+2017 = \frac{1}{2}\cdot 2017\cdot 2018 .

Since the de numerator is 2018, the result is 1008.5.

Well, there was a mistake while formatting and the fractions are all inputs of the functions. Why don't you try now

Jaya Krishna - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...