Without using a calculator, evaluate
Bonus: Find the exact value of the summation.
Hint: Perhaps this summation is connected to the digamma function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Digamma Function
S = n = 2 ∑ ∞ n 4 − 1 1 = n = 2 ∑ ∞ ( n 2 − 1 ) ( n 2 + 1 ) 1 = 2 1 n = 2 ∑ ∞ ( n 2 − 1 1 − n 2 + 1 1 ) = 2 1 n = 2 ∑ ∞ ( n − 1 ) ( n + 1 ) 1 − 2 1 n = 2 ∑ ∞ ( n − i ) ( n + i ) 1 = 4 1 n = 2 ∑ ∞ ( n − 1 1 − n + 1 1 ) − 4 i 1 n = 2 ∑ ∞ ( n − i 1 − n + i 1 ) = 4 1 ( 1 + 2 1 ) − 4 i 1 ( n = 1 ∑ ∞ n − i 1 − 1 − i 1 − n = 1 ∑ ∞ n + i 1 + 1 + i 1 ) = 8 3 + 4 1 − 4 i 1 ( ψ 0 ( 1 + i ) − ψ 0 ( 1 − i ) ) = 8 5 + 4 i 1 ( i 1 − π cot ( π i ) ) = 8 5 + 4 1 + 4 i 1 ( e − π − e π π i ( e − π + e π ) ) = 8 7 − 4 π coth π ≈ 0 . 0 8 6 7 Digamma function ψ 0 ( z + 1 ) = γ − n = 1 ∑ ∞ ( z + n 1 − n 1 ) ψ 0 ( 1 − z ) − ψ 0 ( z ) = π cot ( π z ) ψ 0 ( z + 1 ) = ψ 0 ( z ) + z 1