Not Your Average Summation

Calculus Level 3

Without using a calculator, evaluate n = 2 1 n 4 1 \large \sum _{ n=2 }^{ \infty }{ \frac { 1 }{ { n }^{ 4 }-1 } }

Bonus: Find the exact value of the summation.

Hint: Perhaps this summation is connected to the digamma function .


The answer is 0.0867.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 26, 2018

Relevant wiki: Digamma Function

S = n = 2 1 n 4 1 = n = 2 1 ( n 2 1 ) ( n 2 + 1 ) = 1 2 n = 2 ( 1 n 2 1 1 n 2 + 1 ) = 1 2 n = 2 1 ( n 1 ) ( n + 1 ) 1 2 n = 2 1 ( n i ) ( n + i ) = 1 4 n = 2 ( 1 n 1 1 n + 1 ) 1 4 i n = 2 ( 1 n i 1 n + i ) = 1 4 ( 1 + 1 2 ) 1 4 i ( n = 1 1 n i 1 1 i n = 1 1 n + i + 1 1 + i ) Digamma function ψ 0 ( z + 1 ) = γ n = 1 ( 1 z + n 1 n ) = 3 8 + 1 4 1 4 i ( ψ 0 ( 1 + i ) ψ 0 ( 1 i ) ) ψ 0 ( 1 z ) ψ 0 ( z ) = π cot ( π z ) = 5 8 + 1 4 i ( 1 i π cot ( π i ) ) ψ 0 ( z + 1 ) = ψ 0 ( z ) + 1 z = 5 8 + 1 4 + 1 4 i ( π i ( e π + e π ) e π e π ) = 7 8 π 4 coth π 0.0867 \begin{aligned} S & = \sum_{n=2}^\infty \frac 1{n^4-1} \\ & = \sum_{n=2}^\infty \frac 1{(n^2-1)(n^2+1)} \\ & = \frac 12 \sum_{n=2}^\infty \left(\frac 1{n^2-1} - \frac 1{n^2+1} \right) \\ & = \frac 12 \sum_{n=2}^\infty \frac 1{(n-1)(n+1)} - \frac 12 \sum_{n=2}^\infty \frac 1{(n-i)(n+i)} \\ & = \frac 14 \sum_{n=2}^\infty \left(\frac 1{n-1} - \frac 1{n+1}\right) - \frac 1{4i} \sum_{\color{#3D99F6}n=2}^\infty \left(\frac 1{n-i} - \frac 1{n+i} \right) \\ & = \frac 14 \left(1+\frac 12\right) - \frac 1{4i} \left({\color{#3D99F6}\sum_{\color{#D61F06}n=1}^\infty \frac 1{n-i}} - \frac 1{1-i} - {\color{#3D99F6}\sum_{\color{#D61F06}n=1}^\infty \frac 1{n+i}} + \frac 1{1+i} \right) & \small \color{#3D99F6} \text{Digamma function }\psi_0 (z+1) = \gamma - \sum_{n=1}^\infty \left(\frac 1{z+n} - \frac 1n\right) \\ & = \frac 38 + \frac 14 - \frac 1{4i} \left(\color{#3D99F6} \psi_0 (1+i) - \psi_0 (1-i) \right) & \small \color{#3D99F6} \psi_0 (1-z) - \psi_0 (z) = \pi \cot (\pi z) \\ & = \frac 58 + \frac 1{4i} \left(\color{#3D99F6} \frac 1i - \pi\cot (\pi i) \right) & \small \color{#3D99F6} \psi_0 (z+1) = \psi_0 (z) + \frac 1z \\ & = \frac 58 + \frac 14 + \frac 1{4i} \left( \frac {\pi i(e^{-\pi}+e^\pi)}{e^{-\pi}-e^\pi} \right) \\ & = \frac 78 - \frac \pi 4 \coth \pi \\ & \approx \boxed{0.0867} \end{aligned}

@Kok Hao , yes, it is digamma function. I think x x should be n n and the problem should be Calculus instead of Algebra because it involves \infty .

Chew-Seong Cheong - 2 years, 8 months ago

Log in to reply

Yes, I have fixed the problem and placed it in the Calculus section. Thanks for your feedback.

Kok Hao - 2 years, 8 months ago

Log in to reply

I have changed the x x to n n , which is conventionally used as integers.

Chew-Seong Cheong - 2 years, 8 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...