Not your ordinary integral

Calculus Level 4

0 9 x 7 e x 3 d x \large \int_{0}^{\infty} \sqrt{\frac{9 x^7}{e^{x^3}}} \, dx

The value of the improper integral above can be expressed as k π \sqrt{k\pi} , where k k is an integer . Find the value of k k .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 27, 2016

Relevant wiki: Gamma Function

I = 0 9 x 7 e x 3 d x = 0 3 x 7 2 e x 3 2 d x Let t = x 3 2 x = 2 1 3 t 1 3 d x = 2 1 3 t 2 3 3 d t = 0 3 e t 2 7 6 t 7 6 2 1 3 t 2 3 3 d t = 0 2 2 e t t 1 2 d t = 2 2 Γ ( 3 2 ) = 2 2 1 2 Γ ( 1 2 ) = 2 2 1 2 π = 2 π \begin{aligned} I & = \int_0^\infty \sqrt{\frac{9x^7}{e^{x^3}}} \ dx \\ & = \int_0^\infty 3x^{\frac 72}e^{-\color{#3D99F6}{\frac{x^3}2}} \ dx \quad \quad \small \color{#3D99F6}{\text{Let }t = \frac {x^3}2 \implies x = 2^\frac 13t^\frac 13 \implies dx = \frac {2^\frac 13 t^{- \frac 23}}3 \ dt} \\ & = \int_0^\infty 3e^{-t} 2^\frac 76 t^\frac 76 \cdot \frac {2^\frac 13 t^{- \frac 23}}3 \ dt \\ & = \int_0^\infty 2\sqrt 2 e^{-t}t^\frac 12 \ dt \\ & = 2\sqrt 2 \Gamma \left( \frac 32 \right) \\ & = 2 \sqrt 2 \cdot \frac 12 \Gamma \left( \frac 12 \right) \\ & = 2 \sqrt 2 \cdot \frac 12 \cdot \sqrt \pi \\ & = \sqrt{2\pi} \end{aligned}

k = 2 \implies k = \boxed{2}

Mrudul Aluri
Jun 6, 2017

You can solve it without the gamma function, but its a bit lengthy -

0 9 x 7 e x 3 d x \int_{0}^{\infty} \sqrt{\frac{9 x^7}{e^{x^3}}} \, dx = 0 3 x 7 2 e x 3 2 d x Let t 2 = x 3 t = x 3 2 d x = 2 3 x 1 2 d t = 0 2 3 . 3 x 7 2 1 2 e x 3 2 d t = 2 0 x 3 e x 3 2 d t = 2 0 t 2 e t 2 2 d t \displaystyle =\int_0^\infty 3x^{\frac 72}e^{\frac{x^3}2} \ dx \quad \quad \small \color{#3D99F6}{\text{Let }t^2 = {x^3} \implies t = x^\frac{3}{2} \implies dx = \frac 23 x^{- \frac 12}dt\\ } \\= \displaystyle \int_{0}^{\infty} \frac 23 . 3 x^{\frac 72 - \frac 12} e^{\frac {x^3}2} dt \\ = \displaystyle 2\int_{0}^{\infty} x^3 e^{\frac {x^3}2} dt \\= \displaystyle 2\int_{0}^{\infty} {\color{#D61F06}t^2} e^{- \color{#D61F06}{\frac{t^2}2}} dt

Generalise for \text{Generalise for} f( n , a ) = 2 0 t n e a t 2 d t \text{f(}{\color{#3D99F6}n}, {\color{#CEBB00}a})\quad = \quad \displaystyle 2\int_{0}^{\infty} t^{\color{#3D99F6}n} e^{{- \color{#CEBB00}a}t^2} dt

If we observe, we see that f( n , a ) = a f( n 2 , a ) f( n , a ) = a 2 0 t n 2 e a t 2 d t In this case, n = 2. Therefore f( 2 , a ) = a 2 0 t 2 2 e a t 2 d t = a 2 0 e a t 2 d t Let u 2 = a t 2 d t = a 1 2 d u f( 2 , a ) = a 2 a 1 2 0 e u 2 d u The above boxed integral is the famous ’Gaussian Integral’ and the result is π 2 f( 2 , a ) = 2. 1 2 a 3 2 . π 2 In this case, a = 1 2 f( 2 , 1 2 ) = 1 2 3 2 . π 2 = 2 2 . π 2 = 2 π k = 2 \text{If we observe, we see that} \\ \displaystyle \text{f(}{\color{#3D99F6}n}, {\color{#CEBB00}a}) = \displaystyle - \frac {\partial}{\partial a} \text{f(}{\color{#3D99F6}n-2}, {\color{#CEBB00}a}) \\ \implies \text{f(}{\color{#3D99F6}n}, {\color{#CEBB00}a}) = \displaystyle - \frac {\partial}{\partial a} 2\int_{0}^{\infty} t^{\color{#3D99F6}n-2} e^{{-\color{#CEBB00}a}t^2} dt \\ \text{In this case, n = 2. Therefore} \\ \implies \text{f(}{\color{#3D99F6}2}, {\color{#CEBB00}a}) = \displaystyle - \frac {\partial}{\partial a} 2\int_{0}^{\infty} t^{\color{#3D99F6}2-2} e^{{-\color{#CEBB00}a}t^2} dt = \displaystyle - \frac {\partial}{\partial a} 2\int_{0}^{\infty} e^{{-\color{#CEBB00}a}t^2} dt \quad \quad \small \color{#3D99F6}{\text{Let}u^2 = {\color{#CEBB00}{a}}t^2 \implies dt = {\color{#CEBB00}a}^{- \frac 12}du} \\ \implies \text{f(}{\color{#3D99F6}2}, {\color{#CEBB00}a}) = \displaystyle - \frac {\partial}{\partial a} 2 {\color{#CEBB00}a}^{- \frac 12} \boxed{\displaystyle \int_{0}^{\infty} e^{{-\color{#D61F06}u^2}} du} \\ \text{The above boxed integral is the famous 'Gaussian Integral' and the result is} \frac{\sqrt{\pi}}2 \\ \implies \text{f(}{\color{#3D99F6}2}, {\color{#CEBB00}a}) = \displaystyle - 2 . -\frac 12 {\color{#CEBB00}a}^{- \frac 32} . \frac{\sqrt{\pi}}2 \quad \small \text{In this case,} {\color{#CEBB00}a} = \frac 12 \\ \implies \text{f(}{\color{#3D99F6}2}, {\color{#CEBB00}\frac 12}) = \displaystyle{\color{#CEBB00}\frac 12}^{-\frac 32} . \frac{\sqrt{\pi}}2 = 2\sqrt 2 . \frac{\sqrt{\pi}}2 = \boxed{\sqrt{2\pi}} \\ \implies \text{k} = \boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...