∫ 0 ∞ e x 3 9 x 7 d x
The value of the improper integral above can be expressed as k π , where k is an integer . Find the value of k .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
You can solve it without the gamma function, but its a bit lengthy -
∫ 0 ∞ e x 3 9 x 7 d x = ∫ 0 ∞ 3 x 2 7 e 2 x 3 d x Let t 2 = x 3 ⟹ t = x 2 3 ⟹ d x = 3 2 x − 2 1 d t = ∫ 0 ∞ 3 2 . 3 x 2 7 − 2 1 e 2 x 3 d t = 2 ∫ 0 ∞ x 3 e 2 x 3 d t = 2 ∫ 0 ∞ t 2 e − 2 t 2 d t
Generalise for f( n , a ) = 2 ∫ 0 ∞ t n e − a t 2 d t
If we observe, we see that f( n , a ) = − ∂ a ∂ f( n − 2 , a ) ⟹ f( n , a ) = − ∂ a ∂ 2 ∫ 0 ∞ t n − 2 e − a t 2 d t In this case, n = 2. Therefore ⟹ f( 2 , a ) = − ∂ a ∂ 2 ∫ 0 ∞ t 2 − 2 e − a t 2 d t = − ∂ a ∂ 2 ∫ 0 ∞ e − a t 2 d t Let u 2 = a t 2 ⟹ d t = a − 2 1 d u ⟹ f( 2 , a ) = − ∂ a ∂ 2 a − 2 1 ∫ 0 ∞ e − u 2 d u The above boxed integral is the famous ’Gaussian Integral’ and the result is 2 π ⟹ f( 2 , a ) = − 2 . − 2 1 a − 2 3 . 2 π In this case, a = 2 1 ⟹ f( 2 , 2 1 ) = 2 1 − 2 3 . 2 π = 2 2 . 2 π = 2 π ⟹ k = 2
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Gamma Function
I = ∫ 0 ∞ e x 3 9 x 7 d x = ∫ 0 ∞ 3 x 2 7 e − 2 x 3 d x Let t = 2 x 3 ⟹ x = 2 3 1 t 3 1 ⟹ d x = 3 2 3 1 t − 3 2 d t = ∫ 0 ∞ 3 e − t 2 6 7 t 6 7 ⋅ 3 2 3 1 t − 3 2 d t = ∫ 0 ∞ 2 2 e − t t 2 1 d t = 2 2 Γ ( 2 3 ) = 2 2 ⋅ 2 1 Γ ( 2 1 ) = 2 2 ⋅ 2 1 ⋅ π = 2 π
⟹ k = 2