Solve the following system of inequalities.
⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ x ( x − 2 ) ≥ 0 ( x − 1 ) ( x − 3 ) ≥ 0 x ( x − 2 ) 5 7 6 + ( x − 1 ) ( x − 3 ) 2 2 5 ≤ 3 ( x − 1 ) 2 − x 2 1 5 2 1
If you think there is no solution or there are infinitely many solutions, compute your answer as 1 0 0 0 .
This is part of the set Things Get Harder! .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The cauchy schwarz inequality holds iff ai=kbi .................??
Problem Loading...
Note Loading...
Set Loading...
3 ( x − 1 ) 2 − x 2
= 3 ( x 2 − 2 x + 1 ) − x 2
= 2 x 2 − 6 x + 3
x ( x − 2 ) + ( x − 1 ) ( x − 3 )
= x 2 − 2 x + x 2 − 4 x + 3
= 2 x 2 − 6 x + 3
∴ 3 ( x − 1 ) 2 − x 2 = x ( x − 2 ) + ( x − 1 ) ( x − 3 )
∵ x ( x − 2 ) ≥ 0 and ( x − 1 ) ( x − 3 ) ≥ 0
∴ x ( x − 2 ) + ( x − 1 ) ( x − 3 ) ≥ 0
3 ( x − 1 ) 2 − x 2 ≥ 0
x ( x − 2 ) 5 7 6 + ( x − 1 ) ( x − 3 ) 2 2 5 ≤ 3 ( x − 1 ) 2 − x 2 1 5 2 1
⇒ [ 3 ( x − 1 ) 2 − x 2 ] [ x ( x − 2 ) 5 7 6 + ( x − 1 ) ( x − 3 ) 2 2 5 ] ≤ 1 5 2 1
⇒ [ x ( x − 2 ) + ( x − 1 ) ( x − 3 ) ] [ x ( x − 2 ) 5 7 6 + ( x − 1 ) ( x − 3 ) 2 2 5 ] ≤ 1 5 2 1
By Cauchy-Schwarz Inequality ,
⇒ [ x ( x − 2 ) + ( x − 1 ) ( x − 3 ) ] [ x ( x − 2 ) 5 7 6 + ( x − 1 ) ( x − 3 ) 2 2 5 ] ≥ 1 5 2 1
∴ we conclude that there exists solution if and only if [ x ( x − 2 ) + ( x − 1 ) ( x − 3 ) ] [ x ( x − 2 ) 5 7 6 + ( x − 1 ) ( x − 3 ) 2 2 5 ] = 1 5 2 1
Also, the equality holds if and only if
x ( x − 2 ) = x ( x − 2 ) 5 7 6 and ( x − 1 ) ( x − 3 ) = ( x − 1 ) ( x − 3 ) 2 2 5
[ x ( x − 2 ) ] 2 = 5 7 6
[ x ( x − 2 ) ] = ± 2 4
∵ x ( x − 2 ) ≥ 0
∴ x ( x − 2 ) = 2 4
⇒ x 2 − 2 x − 2 4 = 0
( x − 6 ) ( x + 4 ) = 0
x = 6 or x = − 4
[ ( x − 1 ) ( x − 3 ) ] 2 = 2 2 5
( x − 1 ) ( x − 3 ) = ± 1 5
∵ ( x − 1 ) ( x − 3 ) ≥ 0
∴ ( x − 1 ) ( x − 3 ) = 1 5
⇒ x 2 − 4 x − 1 2 = 0
( x − 6 ) ( x + 2 ) = 0
x = 6 or x = − 2
We conclude that the solution, which is common to the two equations solved, is 6 .