Not ζ \zeta again!

Calculus Level 4

If

0 ln ( e x + 1 e x 1 ) d x = n ζ ( 2 ) , \int_0^\infty \ln \left( \frac{e^x + 1}{e^x - 1} \right) dx = n \zeta(2),

then n n is a rational number. Find n . n.


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Thomas Welle
Mar 7, 2019

0 log ( e x + 1 e x 1 ) d x = 0 log ( 1 + e x 1 e x ) d x = 0 [ log ( 1 + e x ) log ( 1 e x ) ] d x \int_0^\infty \log\left(\frac{e^x +1}{e^x -1}\right) dx = \int_0^\infty \log\left(\frac{1 +e^{-x}}{1 -e^{-x}}\right)dx = \int_0^\infty [\log(1 +e^{-x}) - \log(1 -e^{-x})] dx

Since e x < 1 e^{-x} <1 , we can expand the logarithms as a power series around 1. This gives, 0 [ n = 1 ( 1 ) n + 1 n e n x + n = 1 1 n e n x ] d x \int_0^\infty \left[ \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} e^{-nx} + \sum_{n=1}^\infty \frac{1}{n} e^{-nx} \right] dx .

Now, using 0 e n x d x = 1 n \int_0^\infty e^{-nx} dx = \frac{1}{n} , we get n = 1 ( 1 ) n + 1 n 2 + n = 1 1 n 2 = 2 n o d d 1 n 2 \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^2} + \sum_{n=1}^\infty \frac{1}{n^2} = 2 \sum_{n \, odd} \frac{1}{n^2}

That is, 2 [ 1 1 2 + 1 3 2 + 1 5 2 + ] 2 \left[ \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots \right]

Which equals, 2 [ ( 1 1 2 + 1 2 2 + 1 3 2 + ) ( 1 2 2 + 1 4 2 + 1 6 2 + ) ] = 2 ( ζ ( 2 ) 1 4 ζ ( 2 ) ) = 3 2 ζ ( 2 ) 2 \left[ ( \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots) - ( \frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \dots) \right] =2\left( \zeta(2) -\frac{1}{4} \zeta(2) \right) =\frac{3}{2} \zeta(2)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...