Not ζ ( 3 ) \zeta(3)

Algebra Level 3

S = 1 1 3 3 + 1 5 3 1 7 3 + \large S=1-\frac{1}{3^{3}}+\frac{1}{5^{3}} -\frac{1}{7^{3}}+ \cdots

Find S S as defined above to 6 decimal places.


The answer is 0.968946.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aaghaz Mahajan
Aug 9, 2019

This is the Dirichlet Beta Function evaluated at 3.

For an elementary proof, see this ....

Consider the polylogarithm function Li s ( z ) \text{Li}_s (z) :

Li s ( z ) = k = 1 z k k s = z 1 s + z 2 2 s + z 3 3 s + z 4 4 s + Li 3 ( i ) = i 1 3 + i 2 2 3 + i 3 3 3 + i 4 4 3 + i 5 5 3 + i 6 6 3 + i 7 7 3 + where i = 1 denotes the imaginary unit. Li 3 ( i ) = i 1 2 3 i 3 3 + 1 4 3 + i 5 3 1 6 3 i 7 3 + S = ( Li 3 ( i ) ) where ( ) denotes the imaginary part function. ( 0.112693 + 0.968946 i ) = 0.968946 \begin{aligned} \text{Li}_s (z) & = \sum_{k=1}^\infty \frac {z^k}{k^s} = \frac z{1^s} + \frac {z^2}{2^s} + \frac {z^3}{3^s} + \frac {z^4}{4^s} + \cdots \\ \text{Li}_3 (i) & = \frac i{1^3} + \frac {i^2}{2^3} + \frac {i^3}{3^3} + \frac {i^4}{4^3} + \frac {i^5}{5^3} + \frac {i^6}{6^3} + \frac {i^7}{7^3} + \cdots & \small \color{#3D99F6} \text{where }i = \sqrt{-1} \text{ denotes the imaginary unit.} \\ \text{Li}_3 (i) & = i - \frac 1{2^3} - \frac i{3^3} + \frac 1{4^3} + \frac i{5^3} - \frac 1{6^3} - \frac i{7^3} + \cdots \\ \implies S & = \Im \left(\text{Li}_3(i) \right) & \small \color{#3D99F6} \text{where }\Im (\cdot) \text{ denotes the imaginary part function.} \\ & \approx \Im \left(-0.112693 + 0.968946i \right) \\ & = \boxed{0.968946} \end{aligned}

Alapan Das
Aug 9, 2019

The above expression or S S can be written as 0 1 1 x ( t a n 1 ( x ) x d x ) d x \int_{0}^1\frac{1}{x}(\int \frac{tan^{-1}(x)}{x} dx) dx =0.968946

How would you solve the integral???

Aaghaz Mahajan - 1 year, 10 months ago

Log in to reply

That's from Wolfram alpha.

Alapan Das - 1 year, 10 months ago

Log in to reply

See my solution...….I have provided a link.....

Aaghaz Mahajan - 1 year, 10 months ago

Yes, I checked with Wolfram Alpha too and the integral involves Li 2 ( i ) \text{Li}_2 (i) , therefore I must well use Li 3 ( i ) \text{Li}_3 (i) directly.

Chew-Seong Cheong - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...