Nothing easier than this ........

Algebra Level 3

( a b ) 3 + ( b c ) 3 + ( c a ) 3 ( a b ) ( b c ) ( c a ) \large{ \frac{\color{#E81990}(\color{#D61F06}a - \color{#3D99F6}b\color{#E81990})^\color{#624F41}3 \color{#20A900}+ \color{#E81990}(\color{#3D99F6}b - \color{#EC7300}c \color{#E81990})^\color{#624F41}3 \color{#20A900}+ \color{#E81990}(\color{#EC7300}c-\color{#D61F06}a\color{#E81990})^\color{#624F41}3}{\color{#E81990}(\color{#D61F06}a- \color{#3D99F6}b\color{#E81990})\color{#E81990}(\color{#3D99F6}b- \color{#EC7300}c\color{#E81990})\color{#E81990}(\color{#EC7300}c-\color{#D61F06}a\color{#E81990})} }
Find the value of above expression \text{Find the value of above expression}

4 3 1 3abc 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let ( a b ) = x (a-b)=x , ( b c ) = y (b-c)=y and ( c a ) = z (c-a)=z .

x 3 + y 3 + z 3 x y z \dfrac{x^3+y^3+z^3}{xyz}

( x + y + z ) ( x 2 + y 2 + z 2 ( x y + y z + z x ) ) + 3 x y z x y z \dfrac{(x+y+z)(x^2+y^2+z^2-(xy+yz+zx))+3xyz}{xyz}

( a b + b c + c a ) ( x 2 + y 2 + z 2 ( x y + y z + z x ) + 3 x y z x y z \dfrac{(a-b+b-c+c-a)(x^2+y^2+z^2-(xy+yz+zx)+3xyz}{xyz}

3 x y z x y z \dfrac{3xyz}{xyz}

3 \boxed{3}

Anand O R
Oct 16, 2015

We know x 3 + y 3 + z 3 = ( x + y + z ) 3 3 ( x + y + z ) ( x y + y z + x z ) + 3 x y z x^3 + y^3 + z^3 = (x+y+z)^3 - 3(x+y+z)(xy+yz+xz) + 3xyz

( a b ) 3 + ( b c ) 3 + ( c a ) 3 = 0 3 3 × 0 × ( ( a b ) ( b c ) + ( b c ) ( c a ) + ( a b ) ( c a ) ) + 3 ( a b ) ( b c ) ( c a ) \therefore (a - b)^3 + (b - c)^3 + (c - a)^3 = 0^3 - 3 \times 0 \times ( (a - b) (b - c)+(b - c) (c - a)+(a - b) (c - a) ) + 3(a - b) (b - c) (c - a)

( a b ) 3 + ( b c ) 3 + ( c a ) 3 = 3 ( a b ) ( b c ) ( c a ) (a - b)^3 + (b - c)^3 + (c - a)^3 = 3 (a - b) (b - c) (c - a)

( a b ) 3 + ( b c ) 3 + ( c a ) 3 ( a b ) ( b c ) ( c a ) = 3 \frac {(a - b)^3 + (b - c)^3 + (c - a)^3 }{(a - b) (b - c) (c - a)} = \boxed{3}

Afreen Sheikh
Apr 15, 2015

Expanding the equation, we get

a 3 b 3 3 a b ( a b ) + b 3 c 3 3 b c ( b c ) + c 3 c 3 3 c a ( c a ) ( a b c c 2 a b 2 c + b c 2 a 2 b + c a 2 + a b 2 a b c ) \frac{a^{3} - b^{3} - 3a b(a-b) + b^{3} - c^{3} - 3bc(b-c) + c^{3} - c^{3} - 3ca(c-a)}{(abc - c^{2}a - b^{2}c + bc^{2} - a^{2}b + ca^{2} + ab^{2} - abc)}

cancelling out

3 ( a 2 b + a b 2 b 2 c + b c 2 c 2 a + c a 2 ) ( a 2 b + a b 2 b 2 c + b c 2 c 2 a + c a 2 ) \frac{3( -a^{2}b + ab^{2} - b^{2}c + bc^{2} - c^{2}a + ca^{2})}{(-a^{2}b + ab^{2} - b^{2}c + bc^{2} - c^{2}a + ca^{2})}

cancelling out and answer is 3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...