Nothing is impossible

Find the sum of last 5 digits of

10 7 121 107^{121}

9 15 8 7 13 12 11

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ankit Nigam
Apr 12, 2016

We have to find ( 100 + 7 ) 121 ( m o d 1 0 5 ) (100 + 7)^{121} \pmod{10^5} ( 121 0 ) 10 0 121 . 1 + ( 121 1 ) 10 0 120 . 7 + + ( 121 119 ) 10 0 2 . 7 119 + ( 121 120 ) 100. 7 120 + ( 121 121 ) 7 121 ( m o d 1 0 5 ) \equiv \binom{121}{0}100^{121}.1 + \binom{121}{1}100^{120}.7 + \cdots + \binom{121}{119}100^2.7^{119} + \binom{121}{120}100.7^{120} + \binom{121}{121}7^{121}\ \pmod {10^5} ( 121.100. 7 120 + 7 121 ) = 7 120 ( 121107 ) ( m o d 1 0 5 ) \equiv (121.100.7^{120} + 7^{121}) = 7^{120}(121107) \pmod {10^5} Then i used python to solve :P

look here

so 7 120 . ( 121107 ) ( m o d 1 0 5 ) = 16107 7^{120}.(121107) \pmod {10^5} = 16107 , therefore sum of digits is 15 15

Looking forward to do it without using computer help. Please do help :)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...